A Comprehensive Taxonomy of Dynamic Texture Representation
Representing dynamic textures (DTs) plays an important role in many real implementations in the computer vision community. Due to the turbulent and non-directional motions of DTs along with the negative impacts of different factors (e.g., environmental changes, noise, illumination, etc.), efficiently analyzing DTs has raised considerable challenges for the state-of-the-art approaches. For 20 years, many different techniques have been introduced to handle the above well-known issues for enhancing the performance. Those methods have shown valuable contributions, but the problems have been incompletely dealt with, particularly recognizing DTs on large-scale datasets. In this article, we present a comprehensive taxonomy of DT representation in order to purposefully give a thorough overview of the existing methods along with overall evaluations of their obtained performances. Accordingly, we arrange the methods into six canonical categories. Each of them is then taken in a brief presentation of its principal methodology stream and various related variants. The effectiveness levels of the state-of-the-art methods are then investigated and thoroughly discussed with respect to quantitative and qualitative evaluations in classifying DTs on benchmark datasets. Finally, we point out several potential applications and the remaining challenges that should be addressed in further directions. In comparison with two existing shallow DT surveys (i.e., the first one is out of date as it was made in 2005, while the newer one (published in 2016) is an inadequate overview), we believe that our proposed comprehensive taxonomy not only provides a better view of DT representation for the target readers but also stimulates future research activities.