Jointly Predicting Future Content in Multiple Social Media Sites Based on Multi-task Learning

2022 ◽  
Vol 40 (4) ◽  
pp. 1-28
Author(s):  
Peng Zhang ◽  
Baoxi Liu ◽  
Tun Lu ◽  
Xianghua Ding ◽  
Hansu Gu ◽  
...  

User-generated contents (UGC) in social media are the direct expression of users’ interests, preferences, and opinions. User behavior prediction based on UGC has increasingly been investigated in recent years. Compared to learning a person’s behavioral patterns in each social media site separately, jointly predicting user behavior in multiple social media sites and complementing each other (cross-site user behavior prediction) can be more accurate. However, cross-site user behavior prediction based on UGC is a challenging task due to the difficulty of cross-site data sampling, the complexity of UGC modeling, and uncertainty of knowledge sharing among different sites. For these problems, we propose a Cross-Site Multi-Task (CSMT) learning method to jointly predict user behavior in multiple social media sites. CSMT mainly derives from the hierarchical attention network and multi-task learning. Using this method, the UGC in each social media site can obtain fine-grained representations in terms of words, topics, posts, hashtags, and time slices as well as the relevances among them, and prediction tasks in different social media sites can be jointly implemented and complement each other. By utilizing two cross-site datasets sampled from Weibo, Douban, Facebook, and Twitter, we validate our method’s superiority on several classification metrics compared with existing related methods.

2013 ◽  
Author(s):  
David Darmon ◽  
Jared Sylvester ◽  
Michelle Girvan ◽  
William M. Rand

2021 ◽  
Author(s):  
Dichao Liu ◽  
Yu Wang ◽  
Kenji Mase ◽  
Jien Kato

Author(s):  
Carmen De Maio ◽  
Mariacristina Gallo ◽  
Fei Hao ◽  
Vincenzo Loia ◽  
Erhe Yang

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Jiang ◽  
Ruijin Wang ◽  
Zhiyuan Xu ◽  
Yaodong Huang ◽  
Shuo Chang ◽  
...  

The fast developing social network is a double-edged sword. It remains a serious problem to provide users with excellent mobile social network services as well as protecting privacy data. Most popular social applications utilize behavior of users to build connection with people having similar behavior, thus improving user experience. However, many users do not want to share their certain behavioral information to the recommendation system. In this paper, we aim to design a secure friend recommendation system based on the user behavior, called PRUB. The system proposed aims at achieving fine-grained recommendation to friends who share some same characteristics without exposing the actual user behavior. We utilized the anonymous data from a Chinese ISP, which records the user browsing behavior, for 3 months to test our system. The experiment result shows that our system can achieve a remarkable recommendation goal and, at the same time, protect the privacy of the user behavior information.


2021 ◽  
Author(s):  
Xiangyu Zhang ◽  
Jun Fang ◽  
Jingfan Zou ◽  
Wenfang Li ◽  
Weigang Xu ◽  
...  

2020 ◽  
Vol 30 (11n12) ◽  
pp. 1759-1777
Author(s):  
Jialing Liang ◽  
Peiquan Jin ◽  
Lin Mu ◽  
Jie Zhao

With the development of Web 2.0, social media such as Twitter and Sina Weibo have become an essential platform for disseminating hot events. Simultaneously, due to the free policy of microblogging services, users can post user-generated content freely on microblogging platforms. Accordingly, more and more hot events on microblogging platforms have been labeled as spammers. Spammers will not only hurt the healthy development of social media but also introduce many economic and social problems. Therefore, the government and enterprises must distinguish whether a hot event on microblogging platforms is a spammer or is a naturally-developing event. In this paper, we focus on the hot event list on Sina Weibo and collect the relevant microblogs of each hot event to study the detecting methods of spammers. Notably, we develop an integral feature set consisting of user profile, user behavior, and user relationships to reflect various factors affecting the detection of spammers. Then, we employ typical machine learning methods to conduct extensive experiments on detecting spammers. We use a real data set crawled from the most prominent Chinese microblogging platform, Sina Weibo, and evaluate the performance of 10 machine learning models with five sampling methods. The results in terms of various metrics show that the Random Forest model and the over-sampling method achieve the best accuracy in detecting spammers and non-spammers.


Sign in / Sign up

Export Citation Format

Share Document