Large Coseismic Slip to the Trench During the 2011 Tohoku-Oki Earthquake

2020 ◽  
Vol 48 (1) ◽  
pp. 321-343 ◽  
Author(s):  
Shuichi Kodaira ◽  
Toshiya Fujiwara ◽  
Gou Fujie ◽  
Yasuyuki Nakamura ◽  
Toshiya Kanamatsu

The strong ground motions, large crustal deformation, and tsunami generated by the 2011 Tohoku-oki earthquake ( Mw 9.1) reveal that a large coseismic slip likely propagated to shallow depth in the Japan Trench. Although data acquired by onshore networks cannot resolve the slip behavior of the updip fault rupture, marine geophysical and geological studies provide direct evidence of coseismic slip to the trench. Differential bathymetry data show ∼50 m of coseismic seafloor displacement extending to the central Japan Trench (38–39.2°N). Seismic data show that coseismic slip ruptured the seafloor within the trench. Pelagic clays may have promoted slip propagation to shallow depths, whereas disturbed/metamorphosed clays may have restricted slip to the main rupture zone. Those observations imply that a smooth, broadly distributed, weak, clay-rich sediment in a shallow part of a subduction zone is a characteristic factor that can foster a large coseismic slip to the trench and, consequently, the generation of a large tsunami. ▪  During the 2011 Tohoku-oki earthquake ( Mw 9.1), more than ∼50 m of slip occurred on a fault that ruptured the seafloor in the central Japan Trench. ▪  The fault rupture reaching the seafloor caused a large tsunami. ▪  Marine geophysical explorations revealed that a clay-rich sediment in the subduction zone was one factor fostering the large fault slip. ▪  Understanding of slip behavior in the shallow portion of a subduction zone will help us prepare for future large tsunamis along the Japan-Kuril Trench.

Author(s):  
Ehsan Jamali Hondori ◽  
Chen Guo ◽  
Hitoshi Mikada ◽  
Jin-Oh Park

AbstractFull-waveform inversion (FWI) of limited-offset marine seismic data is a challenging task due to the lack of refracted energy and diving waves from the shallow sediments, which are fundamentally required to update the long-wavelength background velocity model in a tomographic fashion. When these events are absent, a reliable initial velocity model is necessary to ensure that the observed and simulated waveforms kinematically fit within an error of less than half a wavelength to protect the FWI iterative local optimization scheme from cycle skipping. We use a migration-based velocity analysis (MVA) method, including a combination of the layer-stripping approach and iterations of Kirchhoff prestack depth migration (KPSDM), to build an accurate initial velocity model for the FWI application on 2D seismic data with a maximum offset of 5.8 km. The data are acquired in the Japan Trench subduction zone, and we focus on the area where the shallow sediments overlying a highly reflective basement on top of the Cretaceous erosional unconformity are severely faulted and deformed. Despite the limited offsets available in the seismic data, our carefully designed workflow for data preconditioning, initial model building, and waveform inversion provides a velocity model that could improve the depth images down to almost 3.5 km. We present several quality control measures to assess the reliability of the resulting FWI model, including ray path illuminations, sensitivity kernels, reverse time migration (RTM) images, and KPSDM common image gathers. A direct comparison between the FWI and MVA velocity profiles reveals a sharp boundary at the Cretaceous basement interface, a feature that could not be observed in the MVA velocity model. The normal faults caused by the basal erosion of the upper plate in the study area reach the seafloor with evident subsidence of the shallow strata, implying that the faults are active.


2020 ◽  
Vol 110 (4) ◽  
pp. 1603-1626 ◽  
Author(s):  
Kang Wang ◽  
Douglas S. Dreger ◽  
Elisa Tinti ◽  
Roland Bürgmann ◽  
Taka’aki Taira

ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼34  hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5  m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2  km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5  MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.


1980 ◽  
Vol 35 (1-3) ◽  
pp. 171-182 ◽  
Author(s):  
Akira Matsuzawa ◽  
Toshiro Tamano ◽  
Yutaka Aoki ◽  
Takeshi Ikawa

2000 ◽  
Vol 329 (1-4) ◽  
pp. 171-191 ◽  
Author(s):  
C. Kopp ◽  
J. Fruehn ◽  
E.R. Flueh ◽  
C. Reichert ◽  
N. Kukowski ◽  
...  

Author(s):  
Manabu Toyoshima ◽  
Chikahiro Minowa

In this paper, two times integral of acceleration record was discussed by the use of strong earthquake motion data; recorded in the 1999 Kocaeli (Turkey) Earthquake data. Usually, the two times integral displacements of horizontal seismic acceleration records will diverge. It was estimated for the integral displacement to diverge by the baseline shift caused on sensor tilting during quake. The data was simulated in 3 dimensional and 6 freedom shaking table. The divergent process of seismic data and shaking table data were studied.


Sign in / Sign up

Export Citation Format

Share Document