Evolvability: A Quantitative-Genetics Perspective

2021 ◽  
Vol 52 (1) ◽  
pp. 153-175
Author(s):  
Thomas F. Hansen ◽  
Christophe Pélabon

The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.

1983 ◽  
Author(s):  
Gregory S. Forbes ◽  
John J. Cahir ◽  
Paul B. Dorian ◽  
Walter D. Lottes ◽  
Kathy Chapman

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Okamura ◽  
Yutaka Osada ◽  
Shota Nishijima ◽  
Shinto Eguchi

AbstractNonlinear phenomena are universal in ecology. However, their inference and prediction are generally difficult because of autocorrelation and outliers. A traditional least squares method for parameter estimation is capable of improving short-term prediction by estimating autocorrelation, whereas it has weakness to outliers and consequently worse long-term prediction. In contrast, a traditional robust regression approach, such as the least absolute deviations method, alleviates the influence of outliers and has potentially better long-term prediction, whereas it makes accurately estimating autocorrelation difficult and possibly leads to worse short-term prediction. We propose a new robust regression approach that estimates autocorrelation accurately and reduces the influence of outliers. We then compare the new method with the conventional least squares and least absolute deviations methods by using simulated data and real ecological data. Simulations and analysis of real data demonstrate that the new method generally has better long-term and short-term prediction ability for nonlinear estimation problems using spawner–recruitment data. The new method provides nearly unbiased autocorrelation even for highly contaminated simulated data with extreme outliers, whereas other methods fail to estimate autocorrelation accurately.


2017 ◽  
Vol 59 (2) ◽  
pp. 524-531 ◽  
Author(s):  
Yu Lei ◽  
Min Guo ◽  
Dan-dan Hu ◽  
Hong-bing Cai ◽  
Dan-ning Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document