GTPase-Activating Proteins for Heterotrimeric G Proteins: Regulators of G Protein Signaling (RGS) and RGS-Like Proteins

2000 ◽  
Vol 69 (1) ◽  
pp. 795-827 ◽  
Author(s):  
Elliott M. Ross ◽  
Thomas M. Wilkie
1995 ◽  
Vol 269 (2) ◽  
pp. F141-F158 ◽  
Author(s):  
J. R. Raymond

The hormone-receptor-G protein complex transduces extracellular information into intracellular signals that ultimately regulate cellular functions in a highly specific manner. There are hundreds of receptor types that transduce signals through a relatively limited repertoire of heterotrimeric G proteins. Linear models of signaling specificity that require specific and highly selective coupling of hormone to receptor to G protein have proven inadequate to explain how highly particular signals are funneled through the G protein "bottleneck." Recent studies have uncovered a plethora of mechanisms that contribute to signaling specificity. This review focuses on the mechanisms that contribute to specificity in the interactions of receptors with G proteins.


2016 ◽  
Vol 48 (7) ◽  
pp. 429-445 ◽  
Author(s):  
Taketsugu Hama ◽  
Frank Park

Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 ( PKD1) and 2 ( PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Mohammed Alqinyah ◽  
Christopher Bodle ◽  
Josephine Bou Dagher ◽  
Bandana Chakravarti ◽  
Shreoshi P. Choudhuri ◽  
...  

Regulators of G protein signalling (RGS) proteins display a common RGS domain that interacts with the GTP-bound Gα subunits of heterotrimeric G proteins, enhancing GTP hydrolysis by stabilising the transition state [29, 419, 418], leading to a termination of GPCR signalling. Interactions through protein:protein interactions of many RGS proteins have been identified for targets other than heteromeric G proteins. Sequence analysis of the 20 RGS proteins suggests four families of RGS: RZ, R4, R7 and R12 families. Many of these proteins have been identified to have effects other than through targetting G proteins. Included here is RGS4 for which a number of pharmacological inhibitors have been described.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Katelin E. Ahlers-Dannen ◽  
Mohammed Alqinyah ◽  
Christopher Bodle ◽  
Josephine Bou Dagher ◽  
Bandana Chakravarti ◽  
...  

Regulator of G protein Signaling, or RGS, proteins serve an important regulatory role in signaling mediated by G protein-coupled receptors (GPCRs). They all share a common RGS domain that directly interacts with active, GTP-bound Gα subunits of heterotrimeric G proteins. RGS proteins stabilize the transition state for GTP hydrolysis on Gα and thus induce a conformational change in the Gα subunit that accelerates GTP hydrolysis, thereby effectively turning off signaling cascades mediated by GPCRs. This GTPase accelerating protein (GAP) activity is the canonical mechanism of action for RGS proteins, although many also possess additional functions and domains. RGS proteins are divided into four families, R4, R7, R12 and RZ based on sequence homology, domain structure as well as specificity towards Gα subunits. For reviews on RGS proteins and their potential as therapeutic targets, see e.g. [160, 377, 411, 415, 416, 512, 519, 312, 6].


2019 ◽  
Vol 70 (1) ◽  
pp. 213-238 ◽  
Author(s):  
Sona Pandey

Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs.


2020 ◽  
Vol 13 (617) ◽  
pp. eaax8620 ◽  
Author(s):  
Vincent DiGiacomo ◽  
Marcin Maziarz ◽  
Alex Luebbers ◽  
Jillian M. Norris ◽  
Pandu Laksono ◽  
...  

The advent of deep-sequencing techniques has revealed that mutations in G protein–coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the “RGS-box.” Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein–binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 902
Author(s):  
Hee-Soo Park ◽  
Min-Ju Kim ◽  
Jae-Hyuk Yu ◽  
Kwang-Soo Shin

The heterotrimeric G-protein (G-protein) signaling pathway is one of the most important signaling pathways that transmit external signals into the inside of the cell, triggering appropriate biological responses. The external signals are sensed by various G-protein-coupled receptors (GPCRs) and transmitted into G-proteins consisting of the α, β, and γ subunits. Regulators of G-protein signaling (RGSs) are the key controllers of G-protein signaling pathways. GPCRs, G-proteins, and RGSs are the primary upstream components of the G-protein signaling pathway, and they are highly conserved in most filamentous fungi, playing diverse roles in biological processes. Recent studies characterized the G-protein signaling components in the opportunistic pathogenic fungus Aspergillus fumigatus. In this review, we have summarized the characteristics and functions of GPCRs, G-proteins, and RGSs, and their regulatory roles in governing fungal growth, asexual development, germination, stress tolerance, and virulence in A. fumigatus.


2008 ◽  
Vol 295 (5) ◽  
pp. C1417-C1426 ◽  
Author(s):  
Ashish Thapliyal ◽  
Roger A. Bannister ◽  
Christopher Hanks ◽  
Brett A. Adams

Activator of G protein Signaling 1 (AGS1) and Ras homologue enriched in striatum (Rhes) define a new group of Ras-like monomeric G proteins whose signaling properties and physiological roles are just beginning to be understood. Previous results suggest that AGS1 and Rhes exhibit distinct preferences for heterotrimeric G proteins, with AGS1 selectively influencing Gαi and Rhes selectively influencing Gαs. Here, we demonstrate that AGS1 and Rhes trigger nearly identical modulation of N-type Ca2+ channels (CaV2.2) by selectively altering Gαi-dependent signaling. Whole-cell currents were recorded from HEK293 cells expressing CaV2.2 and Gαi- or Gαs-coupled receptors. AGS1 and Rhes reduced basal current densities and triggered tonic voltage-dependent (VD) inhibition of CaV2.2. Additionally, each protein attenuated agonist-initiated channel inhibition through Gαi-coupled receptors without reducing channel inhibition through a Gαs-coupled receptor. The above effects of AGS1 and Rhes were blocked by pertussis toxin (PTX) or by expression of a Gβγ-sequestering peptide (masGRK3ct). Transfection with HRas, KRas2, Rap1A-G12V, Rap2B, Rheb2, or Gem failed to duplicate the effects of AGS1 and Rhes on CaV2.2. Our data provide the first demonstration that AGS1 and Rhes exhibit similar if not identical signaling properties since both trigger tonic Gβγ signaling and both attenuate receptor-initiated signaling by the Gβγ subunits of PTX-sensitive G proteins. These results are consistent with the possibility that AGS1 and Rhes modulate Ca2+ influx through CaV2.2 channels under more physiological conditions and thereby influence Ca2+-dependent events such as neurosecretion.


Sign in / Sign up

Export Citation Format

Share Document