scholarly journals Synthesis of Highly Porous Catalytic Layers for Polymer Electrolyte Fuel Cell Based on Carbon Aerogels

2019 ◽  
Vol 1 (6) ◽  
pp. 509-519 ◽  
Author(s):  
Julien F. Marie ◽  
Sandrine Berthon-Fabry ◽  
Patrick Achard ◽  
Marian Chatenet ◽  
Eric Chainet ◽  
...  
1996 ◽  
Author(s):  
V A Paganin ◽  
E A Ticianelli ◽  
E R Gonzalez

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shofu Matsuda ◽  
Yuuki Niitsuma ◽  
Yuta Yoshida ◽  
Minoru Umeda

AbstractGenerating electric power using CO2 as a reactant is challenging because the electroreduction of CO2 usually requires a large overpotential. Herein, we report the design and development of a polymer electrolyte fuel cell driven by feeding H2 and CO2 to the anode (Pt/C) and cathode (Pt0.8Ru0.2/C), respectively, based on their theoretical electrode potentials. Pt–Ru/C is a promising electrocatalysts for CO2 reduction at a low overpotential; consequently, CH4 is continuously produced through CO2 reduction with an enhanced faradaic efficiency (18.2%) and without an overpotential (at 0.20 V vs. RHE) was achieved when dilute CO2 is fed at a cell temperature of 40 °C. Significantly, the cell generated electric power (0.14 mW cm−2) while simultaneously yielding CH4 at 86.3 μmol g−1 h−1. These results show that a H2-CO2 fuel cell is a promising technology for promoting the carbon capture and utilization (CCU) strategy.


2021 ◽  
Vol 4 (3) ◽  
pp. 2307-2317
Author(s):  
Aki Kobayashi ◽  
Takahiro Fujii ◽  
Chie Harada ◽  
Eiichi Yasumoto ◽  
Kenyu Takeda ◽  
...  

2014 ◽  
Vol 245 ◽  
pp. 796-800 ◽  
Author(s):  
Jens Eller ◽  
Jörg Roth ◽  
Federica Marone ◽  
Marco Stampanoni ◽  
Alexander Wokaun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document