Enhancing Cell Performance and Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells by Inhibiting the Formation of Cracks in Catalyst Layers

2020 ◽  
Vol 167 (11) ◽  
pp. 114501
Author(s):  
Jujia Zhang ◽  
Huijuan Bai ◽  
Wenrui Yan ◽  
Jin Zhang ◽  
Haining Wang ◽  
...  
2021 ◽  
Author(s):  
Gokul Venugopalan ◽  
Deepra Bhattacharya ◽  
Subarna Kole ◽  
Cameron Ysidron ◽  
Polyxeni P. Angelopoulou ◽  
...  

Ionomer electrode binders are important materials for polymer electrolyte membrane (PEM) fuel cells and electrolyzers and have a profound impact on cell performance. Herein, we report the effect of two...


2014 ◽  
Vol 4 (5) ◽  
pp. 1400-1406 ◽  
Author(s):  
Yuta Nabae ◽  
Mayu Sonoda ◽  
Chiharu Yamauchi ◽  
Yo Hosaka ◽  
Ayano Isoda ◽  
...  

A Pt-free cathode catalyst for polymer electrolyte membrane fuel cells has been developed by multi-step pyrolysis of Fe phthalocyanine and phenolic resin and shows a quite promising fuel cell performance.


Author(s):  
Erman Çelik ◽  
İrfan Karagöz

Polymer electrolyte membrane fuel cells are carbon-free electrochemical energy conversion devices that are appropriate for use as a power source on vehicles and mobile devices emerging with their high energy density, lightweight structure, quick startup and lower operating temperature capabilities. However, they need more developments in the aspects of reactant distribution, less pressure drops, precisely balanced water content and heat management to achieve more reliable and higher overall cell performance. Flow field development is one of the most important fields of study to increase cell performance since it has decisive effects on performance parameters, including bipolar plate, and thus fuel cell weight. In this study, recent developments on conventional flow field designs to eliminate their weaknesses and innovative design approaches and flow field architectures are obtained from patent databases, and both numerical and experimental scientific studies. Fundamental designs that create differences are introduced, and their effects on the performance are discussed with regard to origin, objective, innovation strategy of design besides their strength and probable open development ways. As a result, significant enhancements and design strategies on flow field designs in polymer electrolyte membrane fuel cells are summarized systematically to guide prospective flow field development studies.


2019 ◽  
Vol 166 (14) ◽  
pp. F1105-F1111
Author(s):  
Merit Bodner ◽  
Janet Jonna Bentzen ◽  
Vedrana Andersen Dahl ◽  
Silvia M. Alfaro ◽  
Thomas Steenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document