scholarly journals Garnet-Type Li7La3Zr2O12Solid Electrolyte Thin Films Grown by CO2-Laser Assisted CVD for All-Solid-State Batteries

2016 ◽  
Vol 164 (1) ◽  
pp. A6131-A6139 ◽  
Author(s):  
Christoph Loho ◽  
Ruzica Djenadic ◽  
Michael Bruns ◽  
Oliver Clemens ◽  
Horst Hahn
2019 ◽  
Vol 92 (11) ◽  
pp. 430-434
Author(s):  
Akitoshi HAYASHI ◽  
Atsushi SAKUDA ◽  
Masahiro TATSUMISAGO

2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


2021 ◽  
Vol 27 (S1) ◽  
pp. 1978-1979
Author(s):  
Thomas Demuth ◽  
Till Fuchs ◽  
Anuj Pokle ◽  
Andreas Beyer ◽  
Jürgen Janek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document