Fabrication and Characterization of Tungsten Oxide Nanostructures Using Thermal Evaporation

2019 ◽  
Vol 36 (4) ◽  
pp. 143-149
Author(s):  
Farida Ashraf Ali ◽  
Gouranga Bose ◽  
Sushanta Kumar Kamilla ◽  
Dilip Kumar Mishra ◽  
Priyabrata Pattanaik

Purpose The purpose of this paper is to examine the growth and characterization of the two different compound semiconductors, namely, n-zinc oxide (ZnO) and p-gallium antimonide (GaSb). In this paper, fabrication and characterization of n-ZnO/p-GaSb heterojunction diode is analyzed. Design/methodology/approach Thermo vertical direction solidification (TVDS) method was used to synthesize undoped GaSb ingot from high purity Ga (5N) and Sb (4N) host materials. Thermal evaporation technique is used to prepare a film of GaSb on glass substrate from the pre-synthesized bulk material by TVDS method. Undoped ZnO film was grown on GaSb film by sol–gel method by using chemical wet and dry (CWD) technique to fabricate n-ZnO/p-GaSb heterojunction diode. Findings The formation of crystalline structure and surface morphological analysis of both the GaSb bulk and film have been carried out by x-ray diffraction (XRD) analysis and scanning electron microscopy analysis. From the XRD studies, the structural characterization and phase identification of ZnO/GaSb interface. The current–voltage characteristic of the n-ZnO/p-GaSb heterostructure is found to be rectifying in nature. Originality/value GaSb film growth on any substrate by thermal evaporation method taking a small piece of the sample from the pre-synthesized GaSb bulk ingot has not been reported yet. Semiconductor device with heterojunction diode by using two different semiconductors such as ZnO/GaSb was used by this group for the first time.


2007 ◽  
Vol 7 (12) ◽  
pp. 4434-4438 ◽  
Author(s):  
Hyoun Woo Kim ◽  
Seung Hyun Shim ◽  
Jong Woo Lee

We reported the fabrication and characterization of MgO nanowires, which were grown by thermal evaporation of the mixture of MgB2 and Sn powders at 800 °C through a vapor-liquid-solid (VLS) process. We characterized as-synthesized MgO nanowires using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Sn nanoparticles were located at the tips of the nanowires, serving as catalyst for the growth of MgO nanowires. The produced nanowires were of cubic MgO structures with diameters in the range of 10–170 nm. The PL measurement with a Gaussian fitting exhibited visible light emission bands centered at 403, 576, and 720 nm.


2007 ◽  
Vol 121-123 ◽  
pp. 127-130
Author(s):  
Juan Liu ◽  
Yue Zhang ◽  
Jun Jie Qi ◽  
Yun Hua Huang ◽  
Xiao Mei Zhang

In-doped ZnO nanodisks were successfully fabricated by thermal evaporation Zn, In2O3 and graphite powder mixture without catalyst. Morphology, structures and components of ZnO nanodisks were investigated by SEM, HRTEM, EDS and X-Ray diffraction. ZnO nanodisks have perfect hexagonal shape, with 1~3μm size and 40~100 nm in thickness. The nanodisks are single-crystalline ZnO with wurtzite structure and In content of nanodisks reaches 2.2%. The growth along [0001] is suppressed leading to the formation of ZnO nanodisks. Room temperature photoluminescence spectra of the nanodisks shows that the UV emission peak blueshifts and becomes broader after doping.


Sign in / Sign up

Export Citation Format

Share Document