Microtrack migration: insights into 3D cell motility. Focus on “Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks”

2015 ◽  
Vol 308 (6) ◽  
pp. C434-C435 ◽  
Author(s):  
Dominika A. Rudzka ◽  
Michael F. Olson
2019 ◽  
Vol 52 (3) ◽  
pp. 333-344 ◽  
Author(s):  
Daoxiang Huang ◽  
Yu Nakamura ◽  
Aya Ogata ◽  
Satoru Kidoaki

2015 ◽  
Vol 308 (6) ◽  
pp. C436-C447 ◽  
Author(s):  
Shawn P. Carey ◽  
Aniqua Rahman ◽  
Casey M. Kraning-Rush ◽  
Bethsabe Romero ◽  
Sahana Somasegar ◽  
...  

Tumor cell invasion through the stromal extracellular matrix (ECM) is a key feature of cancer metastasis, and understanding the cellular mechanisms of invasive migration is critical to the development of effective diagnostic and therapeutic strategies. Since cancer cell migration is highly adaptable to physiochemical properties of the ECM, it is critical to define these migration mechanisms in a context-specific manner. Although extensive work has characterized cancer cell migration in two- and three-dimensional (3D) matrix environments, the migration program employed by cells to move through native and cell-derived microtracks within the stromal ECM remains unclear. We previously reported the development of an in vitro model of patterned type I collagen microtracks that enable matrix metalloproteinase-independent microtrack migration. Here we show that collagen microtracks closely resemble channel-like gaps in native mammary stroma ECM and examine the extracellular and intracellular mechanisms underlying microtrack migration. Cell-matrix mechanocoupling, while critical for migration through 3D matrix, is not necessary for microtrack migration. Instead, cytoskeletal dynamics, including actin polymerization, cortical tension, and microtubule turnover, enable persistent, polarized migration through physiological microtracks. These results indicate that tumor cells employ context-specific mechanisms to migrate and suggest that selective targeting of cytoskeletal dynamics, but not adhesion, proteolysis, or cell traction forces, may effectively inhibit cancer cell migration through preformed matrix microtracks within the tumor stroma.


2010 ◽  
Vol 190 (3) ◽  
pp. 461-477 ◽  
Author(s):  
Nao Hiramoto-Yamaki ◽  
Shingo Takeuchi ◽  
Shuhei Ueda ◽  
Kohei Harada ◽  
Satoshi Fujimoto ◽  
...  

EphA2, a member of the Eph receptor family, is frequently overexpressed in a variety of human cancers, including breast cancers, and promotes cancer cell motility and invasion independently of its ligand ephrin stimulation. In this study, we identify Ephexin4 as a guanine nucleotide exchange factor (GEF) for RhoG that interacts with EphA2 in breast cancer cells, and knockdown and rescue experiments show that Ephexin4 acts downstream of EphA2 to promote ligand-independent breast cancer cell migration and invasion toward epidermal growth factor through activation of RhoG. The activation of RhoG recruits its effector ELMO2 and a Rac GEF Dock4 to form a complex with EphA2 at the tips of cortactin-rich protrusions in migrating breast cancer cells. In addition, the Dock4-mediated Rac activation is required for breast cancer cell migration. Our findings reveal a novel link between EphA2 and Rac activation that contributes to the cell motility and invasiveness of breast cancer cells.


2021 ◽  
Author(s):  
Hanxiao Shi ◽  
Atsuko Niimi ◽  
Toshiyuki Takeuchi ◽  
Kazuya Shiogama ◽  
Yasuyoshi Mizutani ◽  
...  

2021 ◽  
Author(s):  
Matthew R. Zanotelli ◽  
Jian Zhang ◽  
Cynthia A. Reinhart-King

Sign in / Sign up

Export Citation Format

Share Document