Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain

1996 ◽  
Vol 271 (2) ◽  
pp. C635-C649 ◽  
Author(s):  
Y. Yano ◽  
J. Geibel ◽  
B. E. Sumpio

The objective of this study was to determine whether focal adhesion proteins pp125FAK (focal adhesion kinase) and paxillin are phosphorylated on tyrosine and might play a role in the morphological change and cell migration induced by strain. Bovine aortic endothelial cells (EC) were subjected to 10% average strain at 60 cycles/min. Cyclic strain increased the tyrosine phosphorylation of pp125FAK at 30 min (3.4-fold) and 4 h (5.9-fold) and the tyrosine phosphorylation of paxillin at 4 h (2.0-fold). Confocal microscopy showed that, after 4-h exposure to strain, EC began to elongate and F-actin, pp125FAK, and paxillin aligned, although they randomly distributed in static condition. Tyrosine kinase inhibitor tyrphostin A25 (100 microM) inhibited not only the tyrosine phosphorylation of pp125FAK and paxillin but also the redistribution of pp125FAK and paxillin, morphological change, and migration of EC induced by strain. These data demonstrate that cyclic strain induced tyrosine phosphorylation and reorganization of pp125FAK and paxillin and suggest that these focal adhesion proteins play a specific role in cyclic strain-induced morphological change and migration.

Heart ◽  
2012 ◽  
Vol 98 (Suppl 2) ◽  
pp. E55.2-E55
Author(s):  
Song ZhiQing ◽  
Guo Wen ◽  
Song ZhiQing

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e108254 ◽  
Author(s):  
Fiona A. Martin ◽  
Alisha McLoughlin ◽  
Keith D. Rochfort ◽  
Colin Davenport ◽  
Ronan P. Murphy ◽  
...  

2009 ◽  
Vol 102 (2) ◽  
pp. 264-272 ◽  
Author(s):  
Rosaria Piga ◽  
Yuji Naito ◽  
Satoshi Kokura ◽  
Osamu Handa ◽  
Toshikazu Yoshikawa

Previous reports have shown that safflower-seed extract and its major antioxidant constituents, serotonin hydroxycinnamic amides, attenuated atherosclerotic lesion formation in apoE-deficient mice, as well as inflammation and aortic stiffness in human subjects. In the present report, we examined a still unknown cell-based mechanism of serotonin derivatives against the development of atherosclerosis, focusing our attention on their action against the increase of adhesion molecules and the release of chemotactic factors on human aortic endothelial cells, phenomena that represent the key events in the early stages of atherosclerogenesis. Serotonin derivatives N-(p-coumaroyl)serotonin and N-feruloylserotonin exerted an inhibitory effect on short-term high glucose-induced up-regulation of mRNA and protein of adhesion and migration factors, and the consequent adhesion and migration of monocytes to endothelial cells; they inhibited the activation of transcription factors such as NF-κB, and the overproduction of the mitochondrial superoxide by acting as scavengers of the superoxide radical. In addition, serotonin derivative concentration inside the cells and inside the mitochondria was increased in a time-dependent manner. These results identify a mechanism of action of serotonin derivatives against endothelial damage at a cellular level, and underline their benefits against the disorders and complications related to reactive oxygen species.


1997 ◽  
Vol 69 (1) ◽  
pp. 135-138 ◽  
Author(s):  
Romualdo J. Segurola ◽  
Babalola Oluwole ◽  
Ira Mills ◽  
Chieko Yokoyama ◽  
Tadashi Tanabe ◽  
...  

1999 ◽  
Vol 276 (4) ◽  
pp. C838-C847 ◽  
Author(s):  
Li-Hong Yeh ◽  
Young J. Park ◽  
Riple J. Hansalia ◽  
Imraan S. Ahmed ◽  
Shailesh S. Deshpande ◽  
...  

The shear-induced intracellular signal transduction pathway in vascular endothelial cells involves tyrosine phosphorylation and activation of mitogen-activated protein (MAP) kinase, which may be responsible for the sustained release of nitric oxide. MAP kinase is known to be activated by reactive oxygen species (ROS), such as H2O2, in several cell types. ROS production in ligand-stimulated nonphagocytic cells appears to require the participation of a Ras-related small GTP-binding protein, Rac1. We hypothesized that Rac1 might serve as a mediator for the effect of shear stress on MAP kinase activation. Exposure of bovine aortic endothelial cells to laminar shear stress of 20 dyn/cm2for 5–30 min stimulated total cellular and cytosolic tyrosine phosphorylation as well as tyrosine phosphorylation of MAP kinase. Treating endothelial cells with the antioxidants N-acetylcysteine and pyrrolidine dithiocarbamate inhibited in a dose-dependent manner the shear-stimulated increase in total cytosolic and, specifically, MAP kinase tyrosine phosphorylation. Hence, the onset of shear stress caused an enhanced generation of intracellular ROS, as evidenced by an oxidized protein detection kit, which were required for the shear-induced total cellular and MAP kinase tyrosine phosphorylation. Total cellular and MAP kinase tyrosine phosphorylation was completely blocked in sheared bovine aortic endothelial cells expressing a dominant negative Rac1 gene product (N17rac1). We concluded that the GTPase Rac1 mediates the shear-induced tyrosine phosphorylation of MAP kinase via regulation of the flow-dependent redox changes in endothelial cells in physiological and pathological circumstances.


Sign in / Sign up

Export Citation Format

Share Document