Estimation of β-cell function from the data of the oral glucose tolerance test

2007 ◽  
Vol 292 (6) ◽  
pp. E1575-E1580 ◽  
Author(s):  
Shinji Sakaue ◽  
Shinji Ishimaru ◽  
Daisuke Ikeda ◽  
Yoshinori Ohtsuka ◽  
Toshiro Honda ◽  
...  

Although a hyperbolic relationship between insulin secretion and insulin sensitivity has been shown, the relationship has been often questioned. We examined the relationship using oral glucose tolerance test (OGTT)-derived indexes. A total of 374 Japanese subjects who had never been given a diagnosis of diabetes underwent a 75-g OGTT. In subjects with normal glucose tolerance (NGT), the ln [insulinogenic index (IGI)] was described by a linear function of ln ( x) ( x, insulin sensitivity index) in regression analysis when the reciprocal of the insulin resistance index in homeostasis model assessment, Matsuda's index, and oral glucose insulin sensitivity index were used as x. Because the 95% confidence interval of the slope of the regression line did not necessarily include −1, the relationships between IGI and x were not always hyperbolic, but power functions IGI × xα = a constant. We thought that IGI × xα was an appropriate β-cell function estimate adjusted by insulin sensitivity and referred to it as β-cell function index (BI). When Matsuda's index was employed as x, the BI values were decreased in subjects without NGT. Log BI had a better correlation with fasting plasma glucose (PG; FPG) and 2-h PG in non-NGT subjects than in NGT subjects. In subjects with any glucose tolerance, log BI was linearly correlated with 1-h PG and glucose spike (the difference between maximum PG and FPG). In conclusion, the relationship between insulin secretion and insulin sensitivity was not always hyperbolic. The BI is a useful tool in the estimation of β-cell function with a mathematical basis.

2011 ◽  
Vol 165 (1) ◽  
pp. 69-76 ◽  
Author(s):  
A Battezzati ◽  
A Mari ◽  
L Zazzeron ◽  
G Alicandro ◽  
L Claut ◽  
...  

BackgroundCystic fibrosis (CF)-related diabetes is a leading complication of CF and is associated with pulmonary and nutritional deterioration, years before an evident hyperglycemia, possibly because of insulin deficiency and resistance.AimTo evaluate glucose tolerance, insulin secretion, and insulin sensitivity by a widely applicable method suitable for accurate and prospective measurements in a CF population.MethodsA total of 165 CF subjects (80 females) aged 17±5 years and 18 age- and sex-matched healthy controls (CON) received an oral glucose tolerance test with glucose, insulin and C-peptide determinations. Insulin sensitivity was defined on the basis of glucose and insulin concentrations using the oral glucose insulin sensitivity index, whereas β-cell function was determined on the basis of a model relating insulin secretion (C-peptide profile) to glucose concentration.ResultsFifteen percent of CF patients had glucose intolerance and 6% had diabetes without fasting hyperglycemia and 3% had diabetes with fasting hyperglycemia. β-cell function was reduced in CF patients compared with CON (70.0±4.1 vs 117.9±11.6 pmol/min per m2 per mM, P<0.001) and decreased significantly with age by −2.7 pmol/min per m2 per mM per year (confidence interval (CI) −4.5 to −0.82), i.e. almost 4% yearly. The early insulin secretion index was also reduced. Insulin sensitivity was similar to CON. CF patients who attained glucose tolerance comparable to CON had lower β-cell function and higher insulin sensitivity.ConclusionThe major alteration in insulin secretion and insulin sensitivity of CF patients is slowly declining β-cell function, consisting of delayed and reduced responsiveness to hyperglycemia, that in CF patients with normal glucose tolerance may be compensated by an increased insulin sensitivity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2158-2158
Author(s):  
Mohamed A. Yassin ◽  
Ahmed M Elawa ◽  
Ashraf T Soliman

Abstract Abstract 2158 Introduction: Both insulin deficiency and insulin resistance are reported in patients with β thalassemia major (BTM). The use of continuous blood glucose monitoring system (CGMS) among the different methods for early detection of glycaemic abnormalities has not been studied thoroughly in these patients. Aims: The aims of this study were: 1. to detect glycaemic abnormalities, if any, in young adults with BTM using fasting blood glucose (FBG), oral glucose tolerance test (OGTT), 72-h continuous glucose concentration by CGMS system, and serum insulin and C-peptide concentrations 2. To compare the results of these two methods in detecting glycaemic abnormalities in these patients and 3. To calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in these patients. In order to evaluate whether glycaemic abnormalities are due to insulin deficiency and/or resistance. Materials and methods: Randomly selected young adults (n = 14) with BTM were the subjects of this study. All patients were investigated using a standard oral glucose tolerance test (OGTT) (using 75 gram of glucose) and 72-h continuous glucose concentration by CGM system (Medtronic system). Fasting serum insulin and C-peptide concentrations were measured and HOMA-B, HOMA-IR were calculated accordingly. Results: Using OGTT, 5 patients had impaired fasting glucose (IFG) (Fasting BG from 5.6 to 6.9 mmol/L). Two of them had impaired glucose tolerance IGT (BG from 7.8 and < 11.1 mmol/L) and one had BG = 16.2 mmol/L after 2-hrs (diabetic). Using CGMS in addition to the glucose data measured by glucometer (3–5 times/ day), 6 patients had IFG. The maximum (postprandial) BG recorded exceeded 11.1 mmol/L in 4 patients (28.5%) (Diabetics) and was > 7.8 but < 11.1 mmol/L in 8 patients (57%) (IGT). The mean values of HOMA and QUICKI in patients with BTM were < 2.6 (1.6± 0.8) and > 0.33 (0.36±0.03) respectively ruling out significant insulin resistance in these adolescents. There was a significant negative correlation between the β-cell function (B %) on the one hand and the fasting and the 2-h BG (r= −0.6, and − 0.48, P< 0.01 respectively) on the other hand. Serum insulin concentrations were not correlated with fasting BG or ferritin levels. The average and maximum BG levels recorded by CGMS were significantly correlated with the fasting BG (r= 0.69 and 0.6 respectively with P < 0.01) and with the BG at 2-hour after oral glucose intake (r= 0.87and 0.86 respectively with P < 0.01). Ferritin concentrations were positively correlated with the fasting BG and the 2-h BG levels in the OGTT (r= 0.69, 0.43 respectively, P < 0.001) as well as with the average and the maximum BG recorded by CGM (r =0.75, and 0.64 respectively with P < 0.01). Ferritin concentrations were negatively correlated with the β-cell function (r= −0.41, P< 0.01). Conclusion: CGMS has proved to be superior to OGTT for the diagnosis of glycaemic abnormalities in young adult patients with BTM. In our patients, defective β-cell function rather than insulin resistance appeared to be the cause for these abnormalities. The significant correlations between serum ferritin concentrations and the beta cell functions suggested the importance of adequate chelation to prevent β-cell dysfunction Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e14194 ◽  
Author(s):  
Silke A. Herzberg-Schäfer ◽  
Harald Staiger ◽  
Martin Heni ◽  
Caroline Ketterer ◽  
Martina Guthoff ◽  
...  

2017 ◽  
Vol 38 (06) ◽  
pp. 411-417 ◽  
Author(s):  
Emma Cockcroft ◽  
Craig Williams ◽  
Sarah Jackman ◽  
Neil Armstrong ◽  
Alan Barker

AbstractAssessment of plasma insulin and glucose outcomes is important in paediatric studies aimed at reducing future risk of type 2 diabetes and cardiovascular disease. The aims of this study are to determine the between-method agreement and the day-to-day reliability of fasting and oral glucose tolerance test (OGTT)-derived estimates of insulin sensitivity and β-cell function in healthy boys. Fasting and OGTT assesments of insulin resistance and β-cell function were performed on 28 boys (12.3±2.9 years). Measurements were repeated after 1 week (fasting, n=28) and 1 day (OGTT, n=8). Agreement between estimates of insulin resistance and β-cell function was examined using Pearson’s correlation coefficient. Reliability was assessed using change in the mean, Pearson’s correlation coefficient, and typical error expressed as a coefficient of variation (CV). The Matsuda index was positively related with QUICKI (r=0.88, P<0.001) and negatively related to HOMA-IR (r=−0.76, P<0.001). The Cederholm index was not significantly related with fasting estimates of insulin resistance (all r<0.40, P>0.05). For reliability, QUICKI had the lowest CV% for the fasting (4.7%) and the Cederholm index for the OGTT (6.4%) estimates. The largest CV% was observed in fasting insulin (30.8%) and insulinogenic index 30’ (62.5%). This study highlights differences in between-method agreement and day-to-day reliability for estimates of insulin resistance in youth. The low CV supports the use of the FGIR (fasting) and Cederholm (OGTT) indices in this population.


2008 ◽  
Vol 93 (3) ◽  
pp. 876-880 ◽  
Author(s):  
A. Lapolla ◽  
M. G. Dalfrà ◽  
G. Mello ◽  
E. Parretti ◽  
R. Cioni ◽  
...  

Abstract Objective: Insulin sensitivity and secretion during early and late pregnancy were assessed in women with normal glucose tolerance and gestational diabetes mellitus (GDM). Research Design and Methods: The oral glucose tolerance test (OGTT) was performed in 903 women at 16–20th gestational week, of whom 37 had GDM (GDM1 group), and 859 repeated the OGTT at wk 26–30. At the second test, 55 had GDM (GDM2 group); the others remained normotolerant (ND group). Insulin sensitivity from OGTT (as quantitative insulin sensitivity check index and OGTT insulin sensitivity) and β-cell function (as the ratio of the areas under the insulin and glucose concentration curves, adjusted for insulin sensitivity) were assessed in both tests. Results: In early pregnancy the quantitative insulin sensitivity check index was not different in the three groups, whereas OGTT insulin sensitivity was lowest in GDM2, intermediate in GDM1, and highest in ND. In late pregnancy both indices were reduced in GDM compared with ND and lower than in early pregnancy. In early pregnancy GDM1, but not GDM2, had lower β-cell function than ND. During the late visit, GDM2 also showed impaired β-cell function compared with ND; furthermore, the adaptation to the increase to insulin resistance from early to late pregnancy was defective in GDM2. Conclusions: In early pregnancy insulin sensitivity, as assessed from the OGTT but not from fasting measurements, is impaired in women who developed GDM. β-Cell function impairment is evident only when GDM is manifest and is characterized by inappropriate adaptation to the pregnancy induced increase in insulin resistance.


2007 ◽  
Vol 293 (1) ◽  
pp. E1-E15 ◽  
Author(s):  
Claudio Cobelli ◽  
Gianna Maria Toffolo ◽  
Chiara Dalla Man ◽  
Marco Campioni ◽  
Paolo Denti ◽  
...  

Assessment of insulin secretion in humans under physiological conditions has been a challenge because of its complex interplay with insulin action and hepatic insulin extraction. The possibility of simultaneously assessing β-cell function, insulin sensitivity, and hepatic insulin extraction under physiological conditions using a simple protocol is appealing, since it has the potential to provide novel insights regarding the regulation of fasting and postprandial glucose metabolism in diabetic and nondiabetic humans. In this Perspective, we review data indicating that an oral glucose tolerance test (OGTT) or a meal test is able to accomplish this goal when interpreted with the oral β-cell minimal model. We begin by using the well-established intravenous minimal model to highlight how the oral minimal model was developed and how the oral assessment parallels that of an intravenous glucose tolerance test (IVGTT). We also point out the unique aspects of both approaches in relation to their ability to assess different aspects of the β-cell secretory cascade. We review the ability of the oral model to concurrently measure insulin sensitivity and hepatic insulin extraction, thereby enabling it to quantitatively portray the complex relationship among β-cell function, hepatic insulin extraction, and insulin action. In addition, data from 204 individuals (54 young and 159 elderly) who underwent both IVGTT and meal tolerance tests are used to illustrate how these different approaches provide complementary but differing insights regarding the regulation of β-cell function in humans.


Sign in / Sign up

Export Citation Format

Share Document