Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects

2006 ◽  
Vol 290 (5) ◽  
pp. E961-E967 ◽  
Author(s):  
Jens M. Bruun ◽  
Jørn W. Helge ◽  
Bjørn Richelsen ◽  
Bente Stallknecht

Obesity is associated with low-grade inflammation, insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the effect of a 15-wk lifestyle intervention (hypocaloric diet and daily exercise) on inflammatory markers in plasma, adipose tissue (AT), and skeletal muscle (SM) in 27 severely obese subjects (mean body mass index: 45.8 kg/m2). Plasma samples, subcutaneous abdominal AT biopsies, and vastus lateralis SM biopsies were obtained before and after the intervention and analyzed by ELISA and RT-PCR. The intervention reduced body weight ( P < 0.001) and increased insulin sensitivity (homeostasis model assessment; P < 0.05). Plasma adiponectin ( P < 0.001) increased, and C-reactive protein ( P < 0.05), IL-6 ( P < 0.01), IL-8 ( P < 0.05), and monocyte chemoattractant protein-1 ( P < 0.01) decreased. AT inflammation was reduced, determined from an increased mRNA expression of adiponectin ( P < 0.001) and a decreased expression of macrophage-specific markers (CD14, CD68), IL-6, IL-8, and tumor necrosis factor-α ( P < 0.01). After adjusting for macrophage infiltration in AT, only IL-6 mRNA was decreased ( P < 0.05). Only very low levels of inflammatory markers were found in SM. The intervention had no effect on adiponectin receptor 1 and 2 mRNA in AT or SM. Thus hypocaloric diet and increased physical activity improved insulin sensitivity and reduced low-grade inflammation. Markers of inflammation were particularly reduced in AT, whereas SM does not contribute to this attenuation of whole body inflammation.

Gut ◽  
2017 ◽  
Vol 68 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Henrik Munch Roager ◽  
Josef K Vogt ◽  
Mette Kristensen ◽  
Lea Benedicte S Hansen ◽  
Sabine Ibrügger ◽  
...  

ObjectiveTo investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality.Design60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed.Results50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye.ConclusionCompared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation.Trial registration numberNCT01731366; Results.


2012 ◽  
Vol 109 (1) ◽  
pp. 43-49 ◽  
Author(s):  
K. Olli ◽  
S. Lahtinen ◽  
N. Rautonen ◽  
K. Tiihonen

Obesity is characterised by a state of chronic low-grade inflammation and the elevated circulating and tissue levels of inflammatory markers, including inflammation-related adipokines, released from white adipose tissue. The expression and release of these adipokines generally rises as the adipose tissue expands and hypoxic conditions start to develop within the tissue. Here, the effect of betaine, a trimethylglycine having a biological role as an osmolyte and a methyl donor, on the expression of inflammation-related markers was tested in human adipocytes under hypoxia. Differentiated adipocytes were cultivated under low (1 %) oxygen tension for 8–20 h. The expression of different adipokines, including IL-6, leptin, PPARγ, TNF-α and adiponectin, was measured by quantitative PCR by determining the relative mRNA level from the adipocytes. Hypoxia, in general, led to a decrease in the expression of PPARγ mRNA in human adipocytes, whereas the expression levels of leptin and IL-6 mRNA were substantially increased by hypoxia. The cultivation of adipocytes under hypoxia also led to a reduction in the expression of TNF-α mRNA. The results showed that hypoxia increased the relative quantification of leptin gene transcription, and that betaine (250 μmol/l) reduced this effect, caused by low oxygen conditions. Under hypoxia, betaine also reduced the mRNA level of the pro-inflammatory markers IL-6 and TNF-α. These results demonstrate that the extensive changes in the expression of inflammation-related adipokines in human adipocytes caused by hypoxia can be diminished by the presence of physiologically relevant concentrations of betaine.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 123 ◽  
Author(s):  
Ignacio Ara ◽  
Pernille Auerbach ◽  
Steen Larsen ◽  
Esmeralda Mata ◽  
Bente Stallknecht ◽  
...  

Macrophage infiltration in two subcutaneous adipose tissue depots and systemic low-grade inflammation were studied in post-obese (PO), obese (O), and control (C) subjects. Young males were recruited into PO: (n = 10, weight-loss avg. 26%, BMI: 26.6 ± 0.7, mean ±SEM kg/m2), O: (n = 10, BMI: 33.8 ± 1.0kg/m2) and C: (n = 10, BMI: 26.6 ± 0.6 kg/m2). PO and C were matched by BMI. Blood and abdominal and gluteal subcutaneous adipose tissue were obtained in the overnight fasted state. Plasma concentrations of IL-6 and CRP were higher (p < 0.05) in O than in PO and C, TNF-α was higher (p < 0.05) only in O compared to PO and IL-18 was similar between groups. The number of CD68+ macrophages was higher (p < 0.05) in the gluteal than the abdominal depot, and higher (p < 0.05) in O and PO compared to C in both depots. The content of CD163+ macrophages was similar between depots but was higher (p < 0.05) in PO compared to C and O in the gluteal depot. In post obese men with a long-term sustained weight loss, systemic low-grade inflammation was similar to non-obese controls despite a higher subcutaneous adipose tissue CD68+ macrophage content. Interestingly, the anti-inflammatory CD163+ macrophage adipose tissue content was consistently higher in post obese than obese and controls.


2009 ◽  
Vol 201 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Camilla Alexanderson ◽  
Elias Eriksson ◽  
Elisabet Stener-Victorin ◽  
Malin Lönn ◽  
Agneta Holmäng

Early postnatal events can predispose to metabolic and endocrine disease in adulthood. In this study, we evaluated the programming effects of a single early postnatal oestradiol injection on insulin sensitivity in adult female rats. We also assessed the expression of genes involved in inflammation and glucose metabolism in skeletal muscle and adipose tissue and analysed circulating inflammation markers as possible mediators of insulin resistance. Neonatal oestradiol exposure reduced insulin sensitivity and increased plasma levels of monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular adhesion molecule-1. In skeletal muscle, oestradiol increased the expression of genes encoding complement component 3 (C3), Mcp-1, retinol binding protein-4 (Rbp4) and transforming growth factor β1 (Tgfβ1). C3 and MCP-1 are both related to insulin resistance, and C3, MCP-1 and TGFβ1 are also involved in inflammation. Expression of genes encoding glucose transporter-4 (Glut 4), carnitine-palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor δ (Ppard) and uncoupling protein 3 (Ucp3), which are connected to glucose uptake, lipid oxidation, and energy uncoupling, was down regulated. Expression of several inflammatory genes in skeletal muscle correlated negatively with whole-body insulin sensitivity. In s.c. inguinal adipose tissue, expression of Tgfβ1, Ppard and C3 was decreased, while expression of Rbp4 and Cpt1b was increased. Inguinal adipose tissue weight was increased but adipocyte size was unaltered, suggesting an increased number of adipocytes. We suggest that early neonatal oestrogen exposure may reduce insulin sensitivity by inducing chronic, low-grade systemic and skeletal muscle inflammation and disturbances of glucose and lipid metabolism in skeletal muscle in adulthood.


Author(s):  
Minqian Shen ◽  
Shiva P.D. Senthil Kumar ◽  
Haifei Shi

AbstractObesity-associated low-grade inflammation at white adipose tissue (WAT) leads to metabolic defects. Sex steroid hormone estrogen may be protective against high-fat diet (HFD)-induced obesity and insulin resistance. This has been tested by many previous studies utilizing rodent models of ovariectomy (OVX) and/or treatment of estradiol (E2), the major biologically active form of estrogen. Body weight and adiposity are increased by OVX and reduced following E2 treatment, however. Thus, the protective roles of E2 may be secondary effects to the changes in body weight and adiposity. We hypothesize that E2 directly prevents inflammation and maintains insulin sensitivity in WAT independent of energy status using mice with similar body weights and adiposity.Four groups of female C57BL/6 mice were used, including sham-operated mice treated with vehicle for E2 and fed with either a low-fat diet (LFD; Sham-Veh-LFD) or a HFD (Sham-Veh-HFD), and HFD-fed OVX mice treated with either vehicle (OVX-Veh-HFD) or E2 (OVX-E2-HFD). Body weight and abdominal parametrial WAT mass, insulin signaling, and expression levels of genes related to low-grade inflammation in WAT were compared between these groups pair-fed with equal amounts of calories for a period of 4 days.Body weights and WAT mass were similar in all four groups. OVX-Veh-HFD mice had impaired insulin signaling associated with rapid activation of inflammation, whereas OVX-E2-HFD group maintained insulin sensitivity without showing inflammation in WAT.E2 directly contributed to the maintenance of insulin sensitivity during the early phase of development of metabolic dysfunction, possibly via preventing low-grade inflammation in WAT.


Sign in / Sign up

Export Citation Format

Share Document