Pulsatile growth hormone secretion persists in genetic growth hormone-releasing hormone resistance

2002 ◽  
Vol 282 (4) ◽  
pp. E943-E951 ◽  
Author(s):  
Hiralal G. Maheshwari ◽  
Suzan S. Pezzoli ◽  
Asad Rahim ◽  
Stephen M. Shalet ◽  
Michael O. Thorner ◽  
...  

Growth hormone (GH) secretion is regulated by GH-releasing hormone (GHRH), somatostatin, and possibly ghrelin, but uncertainty remains about the relative contributions of these hypophysiotropic factors to GH pulsatility. Patients with genetic GHRH receptor (GHRH-R) deficiency present an opportunity to examine GH secretory dynamics in the selective absence of GHRH input. We studied circadian GH profiles in four young men homozygous for a null mutation in the GHRH-R gene by use of an ultrasensitive GH assay. Residual GH secretion was pulsatile, with normal pulse frequency, but severely reduced amplitude (<1% normal) and greater than normal process disorder (as assessed by approximate entropy). Nocturnal GH secretion, both basal and pulsatile, was enhanced compared with daytime. We conclude that rhythmic GH secretion persists in an amplitude-miniaturized version in the absence of a GHRH-R signal. The nocturnal enhancement of GH secretion is likely mediated by decreased somatostatin tone. Pulsatility of residual GH secretion may be caused by oscillations in somatostatin and/or ghrelin; it may also reflect intrinsic oscillations in somatotropes.

2000 ◽  
Vol 25 (2) ◽  
pp. 157-168 ◽  
Author(s):  
M Montero ◽  
L Yon ◽  
S Kikuyama ◽  
S Dufour ◽  
H Vaudry

Growth hormone-releasing hormone (GHRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to the same superfamily of regulatory neuropeptides and have both been characterized on the basis of their hypophysiotropic activities. This review describes the molecular evolution of the GHRH/PACAP gene family from urochordates to mammals and presents the hypothesis that the respective roles of GHRH and PACAP in the control of GH secretion are totally inverted in phylogenetically distant groups of vertebrates. In mammals, GHRH and PACAP originate from distinct precursors whereas, in all submammalian taxa investigated so far, including birds, amphibians and fish, a single precursor encompasses a GHRH-like peptide and PACAP. In mammals, GHRH-containing neurons are confined to the infundibular and dorsomedial nuclei of the hypothalamus while PACAP-producing neurons are widely distributed in hypothalamic and extrahypothalamic areas. In fish, both GHRH- and PACAP-immunoreactive neurons are restricted to the diencephalon and directly innervate the adenohypophysis. In mammals and birds, GHRH plays a predominant role in the control of GH secretion. In amphibians, both GHRH and PACAP are potent stimulators of GH release. In fish, PACAP strongly activates GH release whereas GHRH has little or no effect on GH secretion. The GHRH/PACAP family of peptides thus provides a unique model in which to investigate the structural and functional facets of evolution.


1981 ◽  
Vol 97 (4) ◽  
pp. 448-453 ◽  
Author(s):  
C. G. Scanes ◽  
S. Harvey ◽  
B. A. Morgan ◽  
M. Hayes

Abstract. Variations in plasma growth hormone (GH) concentrations following iv or sc administration of synthetic thyrotrophin-releasing hormone (TRH, Pyr-His-Pro-NH2) have been followed in immature and adult domestic fowl. TRH markedly stimulated GH secretion in newly hatched (1 and 2 day old) chicks and in 6-week-old cockerels but in adult male or female birds of two strains had very little effect, if any. Intravenous injection of 4 TRH analogues (Pyr-His-Mep-NH2, Pyr-Meh-Mep-NH2, Pyr-Meh-Mep-NH and Pyr-Meh-Pro-NH2) were also potent GH secretagogues in 6-week-old birds. The stimulatory effect of TRH or the TRH-analogues on GH secretion was not dose-related.


2009 ◽  
Vol 297 (2) ◽  
pp. R403-R411 ◽  
Author(s):  
E. de Graaf-Roelfsema ◽  
P. P. Veldhuis ◽  
H. A. Keizer ◽  
M. M. E. van Ginneken ◽  
K. G. van Dam ◽  
...  

The influence of intensified and reduced training on nocturnal growth hormone (GH) secretion and elimination dynamics was studied in young (1.5 yr) Standardbred geldings to detect potential markers indicative for early overtraining. Ten horses trained on a treadmill for 32 wk in age-, breed-, and gender-matched fixed pairs. Training was divided into four phases (4, 18, 6, and 4 wk, respectively): 1) habituation to high-speed treadmill trotting, 2) normal training, in which speed and duration of training sessions were gradually increased, 3) in this phase, the horses were divided into 2 groups: control (C) and intensified trained (IT) group. In IT, training intensity, duration, and frequency were further increased, whereas in control these remained unaltered, and 4) reduced training (RT). At the end of phases 2, 3, and 4, blood was sampled overnight every 5 min for 8 h for assessment of GH secretory dynamics using pulse detection, deconvolution analysis, and approximate entropy (ApEn). Intensified training induced overtraining (performance decreased by 19% compared with C), which was associated with an increase in concentration peaks number (3.6 vs. 2.0, respectively), a smaller peak secretion pattern with a prolonged half-life (15.2 vs. 7.3 min, respectively), and an increased ApEn (0.89 vs. 0.49, respectively). RT did not lead to full recovery for the overtrained horses. The increased irregularity of nocturnal GH pulsatility pattern is indicative of a loss of coordinated control of GH regulation. Longer phases of somatostatin withdrawal are hypothesized to be the underlying mechanism for the observed changes in GH pulsatility pattern.


1992 ◽  
Vol 126 (2) ◽  
pp. 113-116 ◽  
Author(s):  
SM Corsello ◽  
A Tofani ◽  
S Della Casa ◽  
R Sciuto ◽  
CA Rota ◽  
...  

Previous studies have shown that corticotropin-releasing hormone (CRH) is capable of inhibiting growth hormone (GH) secretion in response to GH-releasing hormone (GHRH). In an attempt to clarify the mechanism of the CRH action, we have studied the effect of enhanced cholinergic tone induced by pyridostigmine on the CRH inhibition of the GH response to GHRH in a group of six normal men and six normal women. All subjects presented a normal GH response to 50 μg iv GHRH administration (mean peak±sem plasma GH levels 20±2.9 μg/l in men and 28.9±2.9 μg/l in women) with a further significant increase after pyridostigmine pretreatment (60mg orally given 60 min before GHRH) in men (GH peaks 43.1±6.9 μg/l, p<0.005) but not in women (GH peaks 39.2±3.0 μg/l). In the same subjects, peripherally injected CRH (100 μg) significantly inhibited the GH response to GHRH (GH peaks 8.1±0.6 μg/l in men, p<0.005 and 9.9±0.7 μg/l in women, p<0.005). Pyridostigmine (60 mg) given orally at the same time of CRH administration (60 min before GHRH) reversed the CRH inhibition of GHRH-induced GH secretion (GH peaks 35.3±8.2 μg/l in men and 35±3.3 μg/l in women) with a response not significantly different to that seen in the pyridostigmine plus GHRH test. Our data confirm that pyridostigmine is capable of potentiating the GHRH-induced GH release in normal male but not female subjects. In addition, our studies show that the potentiating action of pyridostigmine on the GHRH-induced GH secretion prevails on the inhibiting effect of CRH when the two drugs are given together 1 h before GHRH injection. Both CRH and pyridostigmine could exert their action by modifying, in opposite ways, somatostatin release from the hypothalamus.


1999 ◽  
Vol 276 (5) ◽  
pp. R1351-R1358 ◽  
Author(s):  
N. Shah ◽  
W. S. Evans ◽  
J. D. Veldhuis

The neuroendocrine mechanisms by which estradiol drives growth hormone (GH) secretion in the human are poorly defined. Here we investigate estrogen’s specific regulation of the 24-h pulsatile, nyctohemeral, and entropic modes of GH secretion in healthy postmenopausal women. Volunteers ( n = 9) received randomly ordered placebo versus estradiol-17β (1 mg micronized steroid twice daily orally) treatment for 7–10 days and underwent blood sampling at 10-min intervals for 24 h to capture GH release profiles quantitated in a high-sensitivity chemiluminescence assay. Pulsatile GH secretion was appraised via deconvolution analysis, nyctohemeral GH rhythms by cosinor analysis, and the orderliness of GH release patterns via the approximate entropy statistic. Mean (±SE) 24-h serum GH concentrations approximately doubled on estrogen treatment (viz., from 0.31 ± 0.03 to 0.51 ± 0.07 μg/l; P = 0.033). Concomitantly, serum insulin-like growth factor-I (IGF-I), luteinizing hormone, and follicle-stimulating hormone concentrations fell, whereas thyroid-stimulating hormone and prolactin levels rose ( P < 0.01). The specific neuroendocrine action of estradiol included 1) a twofold amplified mass of GH secreted per burst, with no significant changes in basal GH release, half-life, pulse frequency, or duration; 2) an augmented amplitude and mesor of the 24-h rhythm in GH release, with no alteration in acrophase; and 3) greater disorderliness of GH release (higher approximate entropy). These distinctive and dynamic reactions to estrogen are consistent with partial withdrawal of IGF-I’s negative feedback and/or accentuated central drive to GH secretion.


2011 ◽  
Vol 300 (6) ◽  
pp. E1069-E1075 ◽  
Author(s):  
Claire E. H. M. Donjacour ◽  
N. Ahmad Aziz ◽  
Ferdinand Roelfsema ◽  
Marijke Frölich ◽  
Sebastiaan Overeem ◽  
...  

Hypocretin deficiency causes narcolepsy and may affect neuroendocrine systems and body composition. Additionally, growth hormone (GH) alterations my influence weight in narcolepsy. Symptoms can be treated effectively with sodium oxybate (SXB; γ-hydroxybutyrate) in many patients. This study compared growth hormone secretion in patients and matched controls and established the effect of SXB administration on GH and sleep in both groups. Eight male hypocretin-deficient patients with narcolepsy and cataplexy and eight controls matched for sex, age, BMI, waist-to-hip ratio, and fat percentage were enrolled. Blood was sampled before and on the 5th day of SXB administration. SXB was taken two times 3 g/night for 5 consecutive nights. Both groups underwent 24-h blood sampling at 10-min intervals for measurement of GH concentrations. The GH concentration time series were analyzed with AutoDecon and approximate entropy (ApEn). Basal and pulsatile GH secretion, pulse regularity, and frequency, as well as ApEn values, were similar in patients and controls. Administration of SXB caused a significant increase in total 24-h GH secretion rate in narcolepsy patients, but not in controls. After SXB, slow-wave sleep (SWS) and, importantly, the cross-correlation between GH levels and SWS more than doubled in both groups. In conclusion, SXB leads to a consistent increase in nocturnal GH secretion and strengthens the temporal relation between GH secretion and SWS. These data suggest that SXB may alter somatotropic tone in addition to its consolidating effect on nighttime sleep in narcolepsy. This could explain the suggested nonsleep effects of SXB, including body weight reduction.


1991 ◽  
Vol 124 (5) ◽  
pp. 516-520 ◽  
Author(s):  
Gian Paolo Ceda ◽  
Graziano Ceresini ◽  
Licia Denti ◽  
Dario Magnani ◽  
Lorenzo Marchini ◽  
...  

Abstract. The basal and GH-releasing hormone-stimulated secretion of GH declines in the elderly. We tested the ability of cytidine 5'-diphosphocholine, a drug used in the treatment of stroke and Parkinson's disease, to alter GH secretion in 11 healthy elderly volunteers, aged 69-84. Each subject received an iv infusion of 2 g of cytidine 5'-diphosphocholine or normal saline. GHRH and TRH were also administered during cytidine 5'diphosphocholine infusions. The infusion of cytidine 5'-diphosphocholine induced a 4-fold (p<0.05) increase in serum GH levels over basal values. A small increase in GH was seen after GHRH administration. However, the addition of GHRH to the cytidine 5'-diphosphocholine infusion resulted in a GH response which was significantly greater than that seen after GHRH alone; the integrated concentration of GH was more than 2-fold greater in the cytidine 5'-diphosphocholine treated group (706.85± 185.1 vs 248.9±61.4 μg · l−1 · (120 min)−1; p=0.01). The PRL and TSH responses to TRH were not significantly affected by cytidine 5'-diphosphocholine infusion, indicating that dopaminergic mechanisms are not involved. These studies demonstrate that cytidine 5'-diphosphocholine can enhance basal and GHRH-stimulated GH release in the elderly, but the mechanism of action of the drug remains unclear.


Sign in / Sign up

Export Citation Format

Share Document