Quantitation of hepatic glucose fluxes and pathways of hepatic glycogen synthesis in conscious mice

1995 ◽  
Vol 269 (6) ◽  
pp. E1037-E1043 ◽  
Author(s):  
D. Massillon ◽  
W. Chen ◽  
M. Hawkins ◽  
R. Liu ◽  
N. Barzilai ◽  
...  

Mice were studied with the euglycemic hyperinsulinemic and the hyperglycemic clamp techniques after a 6-h fast: 1) euglycemic (6.7 +/- 0.2 mM) hyperinsulinemia (approximately 800 microU/ml); 2) hyperglycemic (15.3 +/- 0.4 mM) hyperinsulinemia (approximately 800 microU/ml). All mice received an infusion of [3-3H]glucose and [U-14C]lactate. Basal hepatic glucose production (HGP) averaged approximately 170 mumol.kg-1.min-1 in both groups. During euglycemic and hyperglycemic hyperinsulinemia, HGP decreased by 53% (to 76.7 +/- 11.1 mumol.kg-1.min-1; P < 0.01) and 74% (to 43.3 +/- 7.2 mumol.kg-1.min-1; P < 0.01), respectively. Hyperglycemia increased glucose cycling (by 2.1-fold; P < 0.01) and the contribution of gluconeogenesis to HGP (88 vs. 43%; P < 0.01) while decreasing that of glycogenolysis (12 vs. 57%; P < 0.01). The percentage of neosynthetized hepatic glycogen formed via the direct pathway was markedly increased during hyperglycemia (53 +/- 2% vs. 23 +/- 3%; P < 0.01): These data indicate that the assessment of hepatic glucose fluxes can be accomplished in conscious unrestrained mice and that, in the presence of hyperinsulinemia, hyperglycemia causes 1) a further inhibition of HGP mainly via inhibition of glycogenolysis and increase in hepatic glucose cycling; and 2) about a fivefold stimulation in the direct pathway of hepatic glycogen formation.

1996 ◽  
Vol 271 (6) ◽  
pp. E1125-E1127 ◽  
Author(s):  
R. Rognstad

Mice were studied with the euglycemic hyperinsulinemic and the hyperglycemic clamp techniques after a 6-h fast: 1) euglycemic (6.7 +/- 0.2 mM) hyperinsulinemia (approximately 800 microU/ml); 2) hyperglycemic (15.3 +/- 0.4 mM) hyperinsulinemia (approximately 800 microU/ml). All mice received an infusion of [3-3H]glucose and [U-14C]lactate. Basal hepatic glucose production (HGP) averaged approximately 170 mumol.kg-1.min-1 in both groups. During euglycemic and hyperglycemic hyperinsulinemia, HGP decreased by 53% (to 76.7 +/- 11.1 mumol.kg-1.min-1; P < 0.01) and 74% (to 43.3 +/- 7.2 mumol.kg-1.min-1; P < 0.01), respectively. Hyperglycemia increased glucose cycling (by 2.1-fold; P < 0.01) and the contribution of gluconeogenesis to HGP (88 vs. 43%; P < 0.01) while decreasing that of glycogenolysis (12 vs. 57%; P < 0.01). The percentage of neosynthetized hepatic glycogen formed via the direct pathway was markedly increased during hyperglycemia (53 +/- 2% vs. 23 +/- 3%; P < 0.01). These data indicate that the assessment of hepatic glucose fluxes can be accomplished in conscious unrestrained mice and that, in the presence of hyperinsulinemia, hyperglycemia causes 1) a further inhibition of HGP mainly via inhibition of glycogenolysis and increase in hepatic glucose cycling; and 2) about a fivefold stimulation in the direct pathway of hepatic glycogen formation.


2020 ◽  
Vol 117 (12) ◽  
pp. 6733-6740 ◽  
Author(s):  
Thiago M. Batista ◽  
Sezin Dagdeviren ◽  
Shannon H. Carroll ◽  
Weikang Cai ◽  
Veronika Y. Melnik ◽  
...  

Insulin action in the liver is critical for glucose homeostasis through regulation of glycogen synthesis and glucose output. Arrestin domain-containing 3 (Arrdc3) is a member of the α-arrestin family previously linked to human obesity. Here, we show thatArrdc3is differentially regulated by insulin in vivo in mice undergoing euglycemic-hyperinsulinemic clamps, being highly up-regulated in liver and down-regulated in muscle and fat. Mice with liver-specific knockout (KO) of the insulin receptor (IR) have a 50% reduction inArrdc3messenger RNA, while, conversely, mice with liver-specific KO ofArrdc3(L-Arrdc3KO) have increased IR protein in plasma membrane. This leads to increased hepatic insulin sensitivity with increased phosphorylation of FOXO1, reduced expression of PEPCK, and increased glucokinase expression resulting in reduced hepatic glucose production and increased hepatic glycogen accumulation. These effects are due to interaction of ARRDC3 with IR resulting in phosphorylation of ARRDC3 on a conserved tyrosine (Y382) in the carboxyl-terminal domain. Thus,Arrdc3is an insulin target gene, and ARRDC3 protein directly interacts with IR to serve as a feedback regulator of insulin action in control of liver metabolism.


2015 ◽  
Vol 100 (7) ◽  
pp. 2525-2531 ◽  
Author(s):  
Satya Dash ◽  
Changting Xiao ◽  
Cecilia Morgantini ◽  
Khajag Koulajian ◽  
Gary F. Lewis

Purpose: In addition to its direct action on the liver to lower hepatic glucose production, insulin action in the central nervous system (CNS) also lowers hepatic glucose production in rodents after 4 hours. Although CNS insulin action (CNSIA) modulates hepatic glycogen synthesis in dogs, it has no net effect on hepatic glucose output over a 4-hour period. The role of CNSIA in regulating plasma glucose has recently been examined in humans and is the focus of this review. Methods and Results: Intransal insulin (INI) administration increases CNS insulin concentration. Hence, INI can address whether CNSIA regulates plasma glucose concentration in humans. We and three other groups have sought to answer this question, with differing conclusions. Here we will review the critical aspects of each study, including its design, which may explain these discordant conclusions. Conclusions: The early glucose-lowering effect of INI is likely due to spillover of insulin into the systemic circulation. In the presence of simultaneous portal and CNS hyperinsulinemia, portal insulin action is dominant. INI administration does lower plasma glucose independent of peripheral insulin concentration (between ∼3 and 6 h after administration), suggesting that CNSIA may play a role in glucose homeostasis in the late postprandial period when its action is likely greatest and portal insulin concentration is at baseline. The potential physiological role and purpose of this pathway are discussed in this review. Because the effects of INI are attenuated in patients with type 2 diabetes and obesity, this is unlikely to be of therapeutic utility.


2015 ◽  
Vol 129 (10) ◽  
pp. 839-850 ◽  
Author(s):  
Tong-Yan Liu ◽  
Chang-Xiang Shi ◽  
Run Gao ◽  
Hai-Jian Sun ◽  
Xiao-Qing Xiong ◽  
...  

This study provide evidence that irisin reduces hepatic glucose production and the blood glucose level, increases hepatic glycogen synthesis and improves insulin resistance in type 2 diabetes. Irisin may be regarded as an effective therapeutic strategy for type 2 diabetes.


2007 ◽  
Vol 292 (5) ◽  
pp. E1265-E1269 ◽  
Author(s):  
Peter Staehr ◽  
Ole Hother-Nielsen ◽  
Henning Beck-Nielsen ◽  
Michael Roden ◽  
Harald Stingl ◽  
...  

The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1-phosphate → glucose 6-phosphate → glucose. Healthy men ( n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed ∼90% to a GP of ∼8 μmol·kg−1·min−1. Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP declined from ∼90% to 65%, i.e., by ∼2 μmol·kg−1·min−1. The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-2H]galactose ( n = 4), was also ∼2 μmol·kg−1·min−1. The 41st h GP rose by ∼1.5 μmol·kg−1·min−1 and then returned to ∼9 μmol·kg−1·min−1, while plasma glucose concentration increased from ∼4.5 to 5.3 mM, accompanied by a rise in plasma insulin concentration. Over 50% of the galactose infused was accounted for in blood glucose and hepatic glycogen formation. Thus an increase in the rate of GP via the glycogenolytic pathway resulted in a concomitant decrease in the rate of GP via GNG. While the compensatory response to the galactose administration was not complete, since GP increased, hepatic autoregulation is operative in healthy humans during prolonged fasting.


2009 ◽  
Vol 107 (6) ◽  
pp. 1830-1839 ◽  
Author(s):  
Sébastien Banzet ◽  
Nathalie Koulmann ◽  
Nadine Simler ◽  
Hervé Sanchez ◽  
Rachel Chapot ◽  
...  

Prolonged intense exercise is challenging for the liver to maintain plasma glucose levels. Hormonal changes cannot fully account for exercise-induced hepatic glucose production (HGP). Contracting skeletal muscles release interleukin-6 (IL-6), a cytokine able to increase endogenous glucose production during exercise. However, whether this is attributable to a direct effect of IL-6 on liver remains unknown. Here, we studied hepatic glycogen, gluconeogenic genes, and IL-6 signaling in response to one bout of exhaustive running exercise in rats. To determine whether IL-6 can modulate gluconeogenic gene mRNA independently of exercise, we injected resting rats with recombinant IL-6. Exhaustive exercise resulted in a profound decrease in liver glycogen and an increase in gluconeogenic gene mRNA levels, phosphoenolpyruvate-carboxykinase (PEPCK), glucose-6-phosphatase (G6P), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), suggesting a key role for gluconeogenesis in hepatic glucose production. This was associated to an active IL-6 signaling in liver tissue, as shown by signal transducer and activator of transcription and CAAT/enhancer binding protein-β phosphorylation and IL-6-responsive gene mRNA levels at the end of exercise. Recombinant IL-6 injection resulted in an increase in IL-6-responsive gene mRNA levels in the liver. We found a dose-dependent increase in PEPCK gene mRNA strongly correlated with IL-6-induced gene mRNA levels. No changes in G6P and PGC-1α mRNA levels were found. Taken together, our results suggest that, during very demanding exercise, muscle-derived IL-6 could help increase HGP by directly upregulating PEPCK mRNA abundance.


1993 ◽  
Vol 264 (1) ◽  
pp. E1-E10 ◽  
Author(s):  
L. Rossetti ◽  
S. Farrace ◽  
S. B. Choi ◽  
A. Giaccari ◽  
L. Sloan ◽  
...  

Calcitonin gene-related peptide (CGRP) is a neuropeptide that is released at the neuromuscular junction in response to nerve excitation. To examine the relationship between plasma CGRP concentration and intracellular glucose metabolism in conscious rats, we performed insulin (22 pmol.kg-1.min-1) clamp studies combined with the infusion of 0, 20, 50, 100, 200, and 500 pmol.kg-1.min-1 CGRP (plasma concentrations ranging from 2 x 10(-11) to 5 x 10(-9) M). CGRP antagonized insulin's suppression of hepatic glucose production at plasma concentrations (approximately 10(-10) M) that are only two- to fivefold its basal portal concentration. Insulin-mediated glucose disposal was decreased by 20-32% when CGRP was infused at 50 pmol.kg-1.min-1 (plasma concentration 3 x 10(-10) M) or more. The impairment in insulin-stimulated glycogen synthesis in skeletal muscle accounted for all of the CGRP-induced decrease in glucose disposal, while whole body glycolysis was increased despite the reduction in total glucose uptake. The muscle glucose 6-phosphate concentration progressively increased during the CGRP infusions. CGRP inhibited insulin-stimulated glycogen synthase in skeletal muscle with a 50% effective dose of 1.9 +/- 0.36 x 10(-10) M. This effect on glycogen synthase was due to a reduction in enzyme affinity for UDP-glucose, with no changes in the maximal velocity. In vitro CGRP stimulated both hepatic and skeletal muscle adenylate cyclase in a dose-dependent manner. These data suggest that 1) CGRP is a potent antagonist of insulin at the level of muscle glycogen synthesis and hepatic glucose production; 2) inhibition of glycogen synthase is its major biochemical action in skeletal muscle; and 3) these effects are present at concentrations of the peptide that may be in the physiological range for portal vein and skeletal muscle. These data underscore the potential role of CGRP in the physiological modulation of intracellular glucose metabolism.


2011 ◽  
Vol 211 (1) ◽  
pp. 39-46 ◽  
Author(s):  
L A Santiago ◽  
D A Santiago ◽  
L C Faustino ◽  
A Cordeiro ◽  
P C Lisboa ◽  
...  

Mice bearing the genomic mutation Δ337T on the thyroid hormone receptor β (TRβ) gene present the classical signs of resistance to thyroid hormone (TH), with high serum TH and TSH. This mutant TR is unable to bind TH, remains constitutively bound to co-repressors, and has a dominant negative effect on normal TRs. In this study, we show that homozygous (TRβΔ337T) mice for this mutation have reduced body weight, length, and body fat content, despite augmented relative food intake and relative increase in serum leptin. TRβΔ337T mice exhibited normal glycemia and were more tolerant to an i.p. glucose load accompanied by reduced insulin secretion. Higher insulin sensitivity was observed after single insulin injection, when the TRβΔ337T mice developed a profound hypoglycemia. Impaired hepatic glucose production was confirmed by the reduction in glucose generation after pyruvate administration. In addition, hepatic glycogen content was lower in homozygous TRβΔ337T mice than in wild type. Collectively, the data suggest that TRβΔ337T mice have deficient hepatic glucose production, by reduced gluconeogenesis and lower glycogen deposits. Analysis of liver gluconeogenic gene expression showed a reduction in the mRNA of phosphoenolpyruvate carboxykinase, a rate-limiting enzyme, and of peroxisome proliferator-activated receptor-γ coactivator 1α, a key transcriptional factor essential to gluconeogenesis. Reduction in both gene expressions is consistent with resistance to TH action via TRβ, reproducing a hypothyroid phenotype. In conclusion, mice carrying the Δ337T-dominant negative mutation on the TRβ are leaner, exhibit impaired hepatic glucose production, and are more sensitive to hypoglycemic effects of insulin.


1998 ◽  
pp. 240-248 ◽  
Author(s):  
MC Moore ◽  
CC Connolly ◽  
AD Cherrington

In vitro evidence indicates that the liver responds directly to changes in circulating glucose concentrations with reciprocal changes in glucose production and that this autoregulation plays a role in maintenance of normoglycemia. Under in vivo conditions it is difficult to separate the effects of glucose on neural regulation mediated by the central nervous system from its direct effect on the liver. Nevertheless, it is clear that nonhormonal mechanisms can cause significant changes in net hepatic glucose balance. In response to hyperglycemia, net hepatic glucose output can be decreased by as much as 60-90% by nonhormonal mechanisms. Under conditions in which hepatic glycogen stores are high (i.e. the overnight-fasted state), a decrease in the glycogenolytic rate and an increase in the rate of glucose cycling within the liver appear to be the explanation for the decrease in hepatic glucose output seen in response to hyperglycemia. During more prolonged fasting, when glycogen levels are reduced, a decrease in gluconeogenesis may occur as a part of the nonhormonal response to hyperglycemia. A substantial role for hepatic autoregulation in the response to insulin-induced hypoglycemia is most clearly evident in severe hypoglycemia (< or = 2.8 mmol/l). The nonhormonal response to hypoglycemia apparently involves enhancement of both gluconeogenesis and glycogenolysis and is capable of supplying enough glucose to meet at least half of the requirement of the brain. The nonhormonal response can include neural signaling, as well as autoregulation. However, even in the absence of the ability to secrete counterregulatory hormones (glucocorticoids, catecholamines, and glucagon), dogs with denervated livers (to interrupt neural pathways between the liver and brain) were able to respond to hypoglycemia with increases in net hepatic glucose output. Thus, even though the endocrine system provides the primary response to changes in glycemia, autoregulation plays an important adjunctive role.


2016 ◽  
Vol 311 (1) ◽  
pp. R200-R208 ◽  
Author(s):  
Christine Culpepper ◽  
Stephanie R. Wesolowski ◽  
Joshua Benjamin ◽  
Jennifer L. Bruce ◽  
Laura D. Brown ◽  
...  

Hepatic glucose production (HGP) normally begins just prior to birth. Prolonged fetal hypoglycemia, intrauterine growth restriction, and acute hypoxemia produce an early activation of fetal HGP. To test the hypothesis that prolonged hypoxemia increases factors which regulate HGP, studies were performed in fetuses that were bled to anemic conditions (anemic: n = 11) for 8.9 ± 0.4 days and compared with control fetuses ( n = 7). Fetal arterial hematocrit and oxygen content were 32% and 50% lower, respectively, in anemic vs. controls ( P < 0.005). Arterial plasma glucose was 15% higher in the anemic group ( P < 0.05). Hepatic mRNA expression of phosphonenolpyruvate carboxykinase ( PCK1) was twofold higher in the anemic group ( P < 0.05). Arterial plasma glucagon concentrations were 70% higher in anemic fetuses compared with controls ( P < 0.05), and they were positively associated with hepatic PCK1 mRNA expression ( P < 0.05). Arterial plasma cortisol concentrations increased 90% in the anemic fetuses ( P < 0.05), but fetal cortisol concentrations were not correlated with hepatic PCK1 mRNA expression. Hepatic glycogen content was 30% lower in anemic vs. control fetuses ( P < 0.05) and was inversely correlated with fetal arterial plasma glucagon concentrations. In isolated primary fetal sheep hepatocytes, incubation in low oxygen (3%) increased PCK1 mRNA threefold compared with incubation in normal oxygen (21%). Together, these results demonstrate that glucagon and PCK1 may potentiate fetal HGP during chronic fetal anemic hypoxemia.


Sign in / Sign up

Export Citation Format

Share Document