scholarly journals Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent

2015 ◽  
Vol 308 (10) ◽  
pp. G840-G851 ◽  
Author(s):  
M. Kristina Hamilton ◽  
Gaëlle Boudry ◽  
Danielle G. Lemay ◽  
Helen E. Raybould

A causal relationship between the pathophysiological changes in the gut epithelium and altered gut microbiota with the onset of obesity have been suggested but not defined. The aim of this study was to determine the temporal relationship between impaired intestinal barrier function and microbial dysbiosis in the small and large intestine in rodent high-fat (HF) diet-induced obesity. Rats were fed HF diet (45% fat) or normal chow (C, 10% fat) for 1, 3, or 6 wk; food intake, body weight, and adiposity were measured. Barrier function ex vivo using FITC-labeled dextran (4,000 Da, FD-4) and horseradish peroxidase (HRP) probes in Ussing chambers, gene expression, and gut microbial communities was assessed. After 1 wk, there was an immediate but reversible increase in paracellular permeability, decrease in IL-10 expression, and decrease in abundance of genera within the class Clostridia in the ileum. In the large intestine, HRP flux and abundance of genera within the order Bacteroidales increased with time on the HF diet and correlated with the onset of increased body weight and adiposity. The data show immediate insults in the ileum in response to ingestion of a HF diet, which were rapidly restored and preceded increased passage of large molecules across the large intestinal epithelium. This study provides an understanding of microbiota dysbiosis and gut pathophysiology in diet-induced obesity and has identified IL-10 and Oscillospira in the ileum and transcellular flux in the large intestine as potential early impairments in the gut that might lead to obesity and metabolic disorders.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1139 ◽  
Author(s):  
Qihui Luo ◽  
Dongjing Cheng ◽  
Chao Huang ◽  
Yifan Li ◽  
Chengjie Lao ◽  
...  

Background: The damage to intestinal barrier function plays an important role in the development of obesity and associated diseases. Soy isoflavones are effective natural active components for controlling obesity and reducing the level of blood lipid. Here, we explored whether these effects of soy isoflavones were associated with the intestinal barrier function. Methods and Results: The obese rat models were established by high fat diet feeding. Then, those obese rats were supplemented with soy isoflavones at different doses for 4 weeks. Our results showed that obesity induced the expressions of pro-inflammatory cytokines, decreased the anti-inflammatory cytokine (IL-10) expression, elevated intestinal permeability, altered gut microbiota and exacerbated oxidative damages in colon. The administration of soy isoflavones reversed these changes in obese rats, presenting as the improvement of intestinal immune function and permeability, attenuation of oxidative damage, increase in the fraction of beneficial bacteria producing short-chain fatty acids and short-chain fatty acid production, and reduction in harmful bacteria. Furthermore, soy isoflavones blocked the expressions of TLR4 and NF-κB in the colons of the obese rats. Conclusions: Soy isoflavones could improve obesity through the attenuation of intestinal oxidative stress, recovery of immune and mucosal barrier, as well as re-balance of intestinal gut microbiota.


2020 ◽  
Vol 150 (9) ◽  
pp. 2364-2374
Author(s):  
Weixin Ke ◽  
Germán Bonilla-Rosso ◽  
Philipp Engel ◽  
Pan Wang ◽  
Fang Chen ◽  
...  

ABSTRACT Background The root of Platycodon grandiflorus (PG) has a long-standing tradition in the Asian diet and herbal medicine, because of its anti-inflammatory and antiobesity effects. Changes in the gut microbiota can have dietary effects on host health, which suggests a relation between the 2. Objectives The aim of our study was to investigate the relation between PG-mediated suppression of obesity and the composition and functioning of the gut microbiota. Methods Six-week-old male C57BL/6J mice were fed either a control diet (CON, 10% kcal from fat), a high-fat diet (HFD, 60% kcal from fat), or a PG-supplemented HFD for 18 wk. PG was administered by oral gavage at 2 g · kg body weight−1 · d−1. Body weight and food intake were monitored. Lipid metabolism, inflammation, and intestinal barrier function were determined. Amplicon sequencing of the bacterial 16S ribosomal RNA gene was used to explore gut microbiota structure, and nontargeted metabolomics analysis was performed to investigate metabolite concentrations in fecal samples. Results We found that PG significantly ameliorated HFD-induced inflammation, recovered intestinal barrier integrity (reduced permeability by 39% , P = 0.008), reduced fat accumulation by 26% (P = 0.009), and changed the expression of key genes involved in the development of white adipose tissue (P < 0.05) in HFD-fed mice to similar levels in CON mice. Moreover, PG attenuated HFD-induced changes in the gut microbiota; it especially increased Allobaculum (7.3-fold, P = 0.002) relative to HFD, whereas CON was 15.2-fold of HFD (P = 0.002). These changes by PG were associated with an increase in the production of SCFAs (butyrate and propionate, P < 0.001) and other carbohydrate-related metabolites known to have a major role in disease suppression. Conclusions Our study demonstrated that PG beneficially changed the gut microbiota and the gut metabolome in HFD-fed mice, and suggests that the antiobesity effects of PG may be mediated via changes in gut microbiota composition and metabolic activity.


2020 ◽  
Vol 11 (12) ◽  
pp. 10839-10851
Author(s):  
Zhi-jie Ma ◽  
Huan-jun Wang ◽  
Xiao-jing Ma ◽  
Yue Li ◽  
Hong-jun Yang ◽  
...  

Ginger extract showed beneficial effects on rats with antibiotic-associated diarrhea, and the underlying mechanism might be associated with the recovery of gut microbiota and intestinal barrier function.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1954
Author(s):  
John-Peter Ganda Mall ◽  
Frida Fart ◽  
Julia A. Sabet ◽  
Carl Mårten Lindqvist ◽  
Ragnhild Nestestog ◽  
...  

The effect of dietary fibres on intestinal barrier function has not been well studied, especially in the elderly. We aimed to investigate the potential of the dietary fibres oat β-glucan and wheat arabinoxylan to strengthen the intestinal barrier function and counteract acute non-steroid anti-inflammatory drug (indomethacin)-induced hyperpermeability in the elderly. A general population of elderly subjects (≥65 years, n = 49) was randomised to a daily supplementation (12g/day) of oat β-glucan, arabinoxylan or placebo (maltodextrin) for six weeks. The primary outcome was change in acute indomethacin-induced intestinal permeability from baseline, assessed by an in vivo multi-sugar permeability test. Secondary outcomes were changes from baseline in: gut microbiota composition, systemic inflammatory status and self-reported health. Despite a majority of the study population (85%) showing a habitual fibre intake below the recommendation, no significant effects on acute indomethacin-induced intestinal hyperpermeability in vivo or gut microbiota composition were observed after six weeks intervention with either dietary fibre, compared to placebo.


RSC Advances ◽  
2019 ◽  
Vol 9 (65) ◽  
pp. 37947-37956
Author(s):  
Wen Xiong ◽  
Haoyue Ma ◽  
Zhu Zhang ◽  
Meilan Jin ◽  
Jian Wang ◽  
...  

This study investigated the effects of icariin on intestinal barrier function and its underlying mechanisms.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 425-425
Author(s):  
Sunhye Lee ◽  
Michael Goodson ◽  
Wendie Vang ◽  
Karen Kalanetra ◽  
Daniela Barile ◽  
...  

Abstract Objectives 2’-fucosyllactose (2’-FL), the most predominant oligosaccharide found in human milk, acts as a prebiotic with beneficial effects on the host. The aim of this study was to determine the beneficial effect of 2’-FL on intestinal barrier integrity and metabolic functions in low-fat (LF)- and high-fat (HF)-fed mice. Methods Male C57/BL6 mice (n = 32, 8/group; 6 weeks old, JAX, CA) were counter-balanced into four weight-matched groups and fed either a low-fat (LF; 10% kcal fat with 7% kcal sucrose) or HF (45% kcal fat with 17% kcal sucrose) with or without supplementation of 2’-FL in the diet [10% (w/w), 8 weeks; LF/2’-FL or HF/2’-FL; BASF, Germany]. General phenotypes (body weight, energy intake, fat and lean mass), intestinal permeability (ex vivo in Ussing chambers), lipid profiles, and microbial metabolites were assessed. Results 2’-FL significantly attenuated the HF-induced increase in body fat mass with a trend to decrease body weight gain. 2’-FL significantly decreased intestinal permeability in LF-fed mice with a trend for a decrease in HF-fed mice. This was associated with a significant increase in interleukin-22, a cytokine known to have a protective role in intestinal barrier function. Visceral adipocyte size was significantly decreased by 2’-FL in both LF- and HF-fed mice. 2’-FL suppressed HF-induced upregulation of adipogenic transcription factors peroxisome proliferator-activated receptor gamma and sterol regulatory element binding protein-1c in the liver. Lastly, 2’-FL supplementation led to a significant elevation of lactic acid concentration in the cecum of HF-fed mice, which is known to be a product from beneficial microbes. Conclusions 2’-FL supplementation improved gut barrier integrity and lipid metabolism in mice with and without the metabolic challenge of HF feeding. These findings support the use of 2’-FL in the control of gut barrier function and metabolic homeostasis under normal and abnormal physiological conditions. Funding Sources BASF (Germany).


2017 ◽  
Vol 162 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Cuiyuan Jin ◽  
Jizhou Xia ◽  
Sisheng Wu ◽  
Wenqing Tu ◽  
Zihong Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document