Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis

2015 ◽  
Vol 308 (2) ◽  
pp. G112-G120 ◽  
Author(s):  
Shirley Abramovitch ◽  
Efrat Sharvit ◽  
Yosef Weisman ◽  
Amir Bentov ◽  
Eli Brazowski ◽  
...  

1,25(OH)2D3, the active form of vitamin D, has an antiproliferative and antifibrotic effect on hepatic stellate cells. Our aim was to investigate the potential of 1,25(OH)2D3 to inhibit the development of liver fibrosis and to ameliorate established fibrosis in vivo. The antifibrotic effect of 1,25(OH)2D3 was investigated in a thioacetamide (TAA) model (as a preventive treatment and as a remedial treatment) and in a bile duct ligation model. In the preventive model, rats received simultaneously intraperitoneum injection of TAA and/or 1,25(OH)2D3 for 10 wk. In the remedial model, rats were treated with TAA for 10 wk and then received 1,25(OH)2D3 or saline for 8 wk. Fibrotic score was determined by Masson staining. Collagen I, α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase-1 (TIMP1), platelet-derived growth factor (PDGF), and transforming growth factor-β (TGF-β) expression were measured by Western blot analysis and real-time PCR. Hypercalemia was detected by chemistry measurements. Preventive treatment of 1,25(OH)2D3 significantly suppressed liver fibrosis both macroscopically and microscopically and significantly lowered the fibrotic score of the TAA + 1,25(OH)2D3 group compared with the TAA group. 1,25(OH)2D3 significantly inhibited expression of PDGF and TGF-β by ∼50% and suppressed the expression of collagen Iα1, TIMP1, and α-SMA by approximately three-, two-, and threefold, respectively. In contrast, 1,25(OH)2D3 was inefficient in amelioration of established liver fibrosis. Administration of 1,25(OH)2D3 to bile duct ligation rats led to a high mortality rate probably caused by hypercalcemia. We conclude that 1,25(OH)2D3 may be considered as a potential preventive treatment in an in vivo model but failed to ameliorate established cirrhosis.

2000 ◽  
Vol 23 (5) ◽  
pp. 501-506 ◽  
Author(s):  
Ji -Xing Nan ◽  
Eun -Jeon Park ◽  
Sung Hee Lee ◽  
Pil -hoon Park ◽  
Ji Young Kim ◽  
...  

2019 ◽  
Vol 20 (17) ◽  
pp. 4181
Author(s):  
Zi-Yu Chang ◽  
Chin-Chang Chen ◽  
Hsuan-Miao Liu ◽  
Yuan-Chieh Yeh ◽  
Tung-Yi Lin ◽  
...  

The purpose of this study was to investigate whether Ger-Gen-Chyn-Lian-Tang (GGCLT) suppresses oxidative stress, inflammation, and angiogenesis during experimental liver fibrosis through the hypoxia-inducible factor-1α (HIF-1α)-mediated pathway. Male C57BL/6 mice were randomly assigned to a sham-control or bile duct ligation (BDL) group with or without treatment with GGCLT at 30, 100, and 300 mg/kg. Plasma alanine aminotransferase (ALT) levels were analyzed using a diagnostic kit. Liver histopathology and hepatic status parameters were measured. Compared to control mice, the BDL mice exhibited an enlargement in liver HIF-1α levels, which was suppressed by 100 and 300 mg/kg GGCLT treatments (control: BDL: BDL + GGCLT-100: BDL + GGCLT-300 = 0.95 ± 0.07: 1.95 ± 0.12: 1.43 ± 0.05: 1.12 ± 0.10 fold; p < 0.05). GGCLT restrained the induction of hepatic hydroxyproline and malondialdehyde levels in the mice challenged with BDL, further increasing the hepatic glutathione levels. Furthermore, in response to increased hepatic inflammation and fibrogenesis, significant levels of ALT, nuclear factor kappa B, transforming growth factor-β, α-smooth muscle actin, matrix metalloproteinase-2 (MMP-2), MMP-9, and procollagen-III were found in BDL mice, which were attenuated with GGCLT. In addition, GGCLT reduced the induction of angiogenesis in the liver after BDL by inhibiting vascular endothelial growth factor (VEGF) and VEGF receptors 1 and 2. In conclusion, the anti-liver fibrosis effect of GGCLT, which suppresses hepatic oxidative stress and angiogenesis, may be dependent on an HIF-1α-mediated pathway.


2006 ◽  
Vol 168 (5) ◽  
pp. 1500-1512 ◽  
Author(s):  
Jing-Lin Xia ◽  
Chunsun Dai ◽  
George K. Michalopoulos ◽  
Youhua Liu

2013 ◽  
Vol 437 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Takayo Takemura ◽  
Yuichi Yoshida ◽  
Shinichi Kiso ◽  
Takashi Kizu ◽  
Kunimaro Furuta ◽  
...  

2012 ◽  
Vol 32 (9) ◽  
pp. 1342-1353 ◽  
Author(s):  
Erawan Borkham-Kamphorst ◽  
Sebastian Huss ◽  
Eddy Leur ◽  
Ute Haas ◽  
Ralf Weiskirchen

Sign in / Sign up

Export Citation Format

Share Document