Nonreentrant focal activations in pulmonary veins in canine model of sustained atrial fibrillation

2002 ◽  
Vol 283 (3) ◽  
pp. H1244-H1252 ◽  
Author(s):  
Shengmei Zhou ◽  
Che-Ming Chang ◽  
Tsu-Juey Wu ◽  
Yasushi Miyauchi ◽  
Yuji Okuyama ◽  
...  

Repetitive rapid activities are present in the pulmonary veins (PVs) in dogs with pacing-induced sustained atrial fibrillation (AF). The mechanisms are unclear. We induced sustained (>48 h) AF by rapidly pacing the left atrium (LA) in six dogs. High-density computerized mapping was done in the PVs and atria. Results show repetitive focal activations in all dogs and in 12 of 18 mapped PVs. Activation originated from the middle of the PV and then propagated to the LA and distal PV with conduction blocks. The right atrium (RA) was usually activated by a single large wavefront. Mean AF cycle length in the PVs (left superior, 82 ± 6 ms; left inferior, 83 ± 6 ms; right inferior, 83 ± 4 ms) and LA posterior wall (87 ± 5 ms) were significantly ( P < 0.05) shorter than those in the LA anterior wall (92 ± 4 ms) and RA (107 ± 5 ms). PVs in normal dogs did not have focal activations during induced AF. No reentrant wavefronts were demonstrated in the PVs. We conclude that nonreentrant focal activations are present in the PVs in a canine model of pacing-induced sustained AF.

2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
I Marco Clement ◽  
R Eiros ◽  
R Dalmau ◽  
T Lopez ◽  
G Guzman ◽  
...  

Abstract Introduction The diagnosis of sinus venosus atrial septal defect (SVASD) is complex and requires special imaging. Surgery is the conventional treatment; however, transcatheter repair may become an attractive option. Case report A 60 year-old woman was admitted to the cardiology department with several episodes of paroxysmal atrial flutter, atrial fibrillation and atrioventricular nodal reentrant tachycardia. She reported a 10-year history of occasional palpitations which had not been studied. A transthoracic echocardiography revealed severe right ventricle dilatation and moderate dysfunction. Right volume overload appeared to be secondary to a superior SVASD with partial anomalous pulmonary venous drainage. A transesophageal echocardiography confirmed the diagnosis revealing a large SVASD of 16x12 mm (Figure A) with left-right shunt (Qp/Qs 2,2) and two right pulmonary veins draining into the right superior vena cava. Additionally, it demonstrated coronary sinus dilatation secondary to persistent left superior vena cava. CMR and cardiac CT showed right superior and middle pulmonary veins draining into the right superior vena cava 18 mm above the septal defect (Figures B and C). After discussion in clinical session, a percutaneous approach was planned to correct the septal defect and anomalous pulmonary drainage. For this purpose, anatomical data obtained from CMR and CT was needed to plan the procedure. During the intervention two stents graft were deployed in the right superior vena cava. The distal stent was flared at the septal defect level so as to occlude it while redirecting the anomalous pulmonary venous flow to the left atrium (Figure D). Control CT confirmed the complete occlusion of the SVASD without residual communication from pulmonary veins to the right superior vena cava or the right atrium (Figure E). Anomalous right superior and middle pulmonary veins drained into the left atrium below the stents. Transthoracic echocardiographies showed progressive reduction of right atrium and ventricle dilatation. The patient also underwent successful ablation of atrial flutter and intranodal tachycardia. She is currently asymptomatic, without dyspnea or arrhythmic recurrences. Conclusions In this case, multimodality imaging played a key role in every stage of the clinical process. First, it provided the diagnosis and enabled an accurate understanding of the patient’s anatomy, particularly of the anomalous pulmonary venous connections. Secondly, it allowed a transcatheter approach by supplying essential information to guide the procedure. Finally, it assessed the effectiveness of the intervention and the improvement in cardiac hemodynamics during follow-up. Abstract P649 Figure.


2021 ◽  
pp. 28-31
Author(s):  
Inkar Sagatov ◽  
Nurzhan Dosmailov

The article describes the types of correction of the supracardial form of abnormal drainage of the pulmonary veins. One of the methods of correcting this defect is the Warden operation, which includes: after sternotomy, connection of artificial circulation, cardioplegia, the superior vena cava is cut off, the proximal end is sutured. Next, a right atriotomy is performed, an anastomosis is formed using an autopericardial patch between the abnormal drainage and the left atrium through the ASD. Then an anastomosis is formed between the auricle of the right atrium and the distal end of the superior vena cava. As a result, blood from the abnormal pulmonary veins begins to drain into the left atrium through the ASD.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
V Sobota ◽  
A Van Hunnik ◽  
S Zeemering ◽  
G Gatta ◽  
D Opacic ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): ITN Networks PersonalizeAF: Personalized Therapies for Atrial Fibrillation. A Translational Approach, No. 860974; CATCH ME: Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly, No. 633196; MAESTRIA: Machine Learning and Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation, No. 965286; AFib-TrainNet: EU Training Network on Novel Targets and Methods in Atrial Fibrillation, No. 675351 Netherlands Heart Foundation: CVON2014-09, RACE V Reappraisal of Atrial Fibrillation: Interaction between hyperCoagulability, Electrical remodeling, and Vascular Destabilization in the Progression of Atrial Fibrillation Background Few studies report on mechanisms leading to termination of atrial fibrillation (AF). Purpose To characterise electrophysiological parameters and conduction patterns during the transition from AF to sinus rhythm under various conditions of AF termination. Methods A retrospective evaluation of 6 goat studies was performed. AF was maintained for 3-4 weeks in 29 animals. Four animals were in SR. Unipolar electrograms were acquired with one 249-electrode array/atrium. Pharmacological termination of AF was evoked by various drugs; AP14145 (n = 5), PA6 (n = 7), XAF-1407 (n = 9) vernakalant (n = 8). In animals with sinus rhythm, AF was acutely induced and terminated spontaneously. Baseline AF and ≤3 recordings of the last 10 seconds preceding AF termination were analysed. Intervals with temporal continuous and periodic activity were distinguished in the recordings. AF cycle length (AFCL), conduction velocity and path length were determined for each interval. Results In total, 85 AF terminations were recorded. Switches between temporal continuous and periodic activity were seen frequently during AF. However, termination of AF was always preceded by a phase of periodic activity (PA). The final phase of PA persisted for a median number of 21 [IQR 10-28] cycles in the left atrium and somewhat shorter in the right atrium, Table 1. This final phase of PA was accompanied by a profound bi-atrial increase of AFCL, conduction velocity and path length and a disappearance of inter-atrial cycle length differences. Equipotent changes were not observed in the preceding PAs. During the final AF beats, the number of wave fronts were low, 1 or 2. Interestingly, 92% of the patterns during the last beats of AF involved the Bachmann’s bundle as main source of atrial conduction. Conclusion AF termination is preceded by an increased organisation of fibrillatory conduction, associated with abrupt prolongation of the path length. Propagation in atrial free walls regularly originated from the Bachmann’s bundle. These findings suggest that AF termination was not a random process but follows common spatiotemporal patterns. Final period of temporal organisation Left atrium Right atrium Final PA start Final PA end Final PA start Final PA end Af cycle length (ms) 163 ± 37 204 ± 50* 146 ± 44 207 ± 49* Conduction velocity (cm/s) 77 ± 15 96 ± 25* 83 ± 20 103 ± 24* Path Length (cm) 12.2 ± 2.7 19.3 ± 6.3* 12.0 ± 4.1 21.2 ± 6.4* Length of final periodic activity (beats) NA 21 [IQR 10-28] NA 15 [IQR 10- 25] Electrophysiological changes during the final period periodic activity (PA). Wilcoxon signed rank test. *p &lt;0.05NA= not available


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
A P Martin ◽  
M Fowler ◽  
N Lever

Abstract Background Pulmonary vein isolation using cryotherapy is an established treatment for the management of patients with paroxysmal atrial fibrillation. Ablation using the commercially available balloon cryocatheter has been shown to create wide antral pulmonary vein isolation. A novel balloon cryocatheter (BCC) has been designed to maintain uniform pressure and size during ablation, potentially improving contact with the antral anatomy. The extent of ablation created using the novel BCC has not previously been established. Purpose To determine the anatomical extent of pulmonary vein isolation using electroanatomical mapping when performing catheter ablation for paroxysmal atrial fibrillation using the novel BCC. Methods Nine consecutive patients underwent pre-procedure computed tomography angiography of the left atrium to quantify the chamber dimensions. An electroanatomical map was created using the cryoablation system mapping catheter and a high definition mapping system. A bipolar voltage map was obtained following ablation to determine the extent of pulmonary vein isolation ablation. A volumetric technique was used to quantify the extent of vein and posterior wall electrical isolation in addition to traditional techniques for proving entrance and exit block. Results All patients had paroxysmal atrial fibrillation, mean age 56 years, 7 (78%) male. Electrical isolation was achieved for 100% of the pulmonary veins; mean total procedure time was 109 min (+/- 26 SD), and fluoroscopy time 14.9 min (+/- 2.4 SD). The median treatment applications per vein was one (range one - four), and median treatment duration 180 sec (range 180 -240). Left atrial volume 32 mL/m2 (+/- 7 SD), and mean left atrial posterior wall area 22 cm2 (+/- 4 SD). Data was available for quantitative assessment of the extent of ablation for eight patients. No lesions (0 of 32) were ostial in nature. The antral surface area of ablation was not statistically different between the left and right sided pulmonary veins (p 0.63), which were 5.9 (1.6 SD) and 5.4 (2.1 SD) cm2 respectively. In total 50% of the posterior left atrial wall was ablated.  Conclusion Pulmonary vein isolation using a novel BCC provides a wide and antral lesion set. There is significant debulking of the posterior wall of the left atrium. Abstract Figure.


2001 ◽  
Vol 281 (4) ◽  
pp. H1667-H1674 ◽  
Author(s):  
Masamichi Hirose ◽  
Zeng Leatmanoratn ◽  
Kenneth R. Laurita ◽  
Mark D. Carlson

We hypothesized that pituitary adenylate cyclase-activating polypeptide (PACAP) activates intracardiac postganglionic parasympathetic nerves and has a different effect than cervical vagal stimulation. We measured effective refractory period (ERP) and conduction velocity at four atrial sites [high right atrium (HRA), low right atrium (LRA), high left atrium (HLA), and low left atrium (LLA)] and minimum atrial fibrillation (AF) cycle length at 12 atrial sites during cervical vagal stimulation and after PACAP in 26 autonomically decentralized, open-chest, anesthetized dogs. PACAP shortened ERP to a similar extent at all four sites (HRA, 58 ± 2.0 ms; LRA, 60 ± 6.3 ms; HLA, 68 ± 11.5 ms; and LLA, 60 ± 8.3 ms). Low- and high-intensity vagal stimulation shortened ERP at the HRA, but not in the other atrial sites (low-intensity stimulation: HRA, 64 ± 4.0 ms; LRA, 126 ± 5.1 ms; HLA, 110 ± 9.5 ms; and LLA, 102 ± 11.5 ms; high-intensity stimulation: HRA, 58 ± 4.2 ms; and HLA, 101 ± 4.0 ms). Conduction velocity was not altered by any intervention. Minimum AF cycle length after PACAP was similar in both atria but was shorter in the right atrium than in the left atrium during vagal stimulation. After atropine administration, no interventions changed ERP. These results suggest that PACAP shortens atrial refractoriness uniformly in both atria through activation of intrinsic cardiac nerves, not all of which are activated by cervical vagal stimulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
M. S. Rajeshwari ◽  
Priya Ranganath

Pulmonary veins carry oxygenated blood from the lungs to the left atrium. Variations are quite common in the pattern of drainage. The present study was undertaken to evaluate the incidence of different draining patterns of the right pulmonary veins at the hilum by dissecting the human fixed cadaveric lungs. Clinically, pulmonary veins have been demonstrated to often play an important role in generating atrial fibrillation. Hence, it is important to look into the anatomy of the veins during MR imaging and CT angiography. In 53.8% of cases, the right superior lobar vein and right middle lobar vein were found to be united together to form the right superior pulmonary vein. In contrast to this, in 11.53% of cases, right middle lobar vein united with the right inferior lobar vein to form the right inferior pulmonary vein, while in 26.9% of cases, the right superior lobar vein, right middle lobar vein, and right inferior lobar vein drained separately.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
P Sommer ◽  
S Spitzer ◽  
J Brachmann ◽  
G Janssen ◽  
C Lenz ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Private company. Main funding source(s): Abbott Background The exact pathophysiology of how pulmonary vein (PV) triggers initiate or maintain episodes of atrial fibrillation (AF) has been elusive. Catheter ablation at relatively circumscribed areas of rapidly spinning rotors or very rapid focal impulse formation can significantly affect AF. Targeted ablation of these sources using Focal Impulse and Rotor Modulation (FIRM™) shows promise. Purpose To assess the safety and effectiveness of FIRM-guided procedures for the treatment of any type of symptomatic atrial fibrillation (AF). Methods Two hundred and ninety-nine subjects were enrolled in the E-FIRM Registry at 9 clinical sites in Germany and the Netherlands. Subjects were eligible if they had reported incidence of at least 2 documented episodes of symptomatic AF during the preceding 3 months and had failed at least Class I or III anti-arrhythmia drug. Data was collected at enrollment/baseline, procedure, and at 3-, 6-, and 12-month follow-up visits. Results A majority (59.5%, 178/299) had a history of previous ablation, 81.1% (133/164) in the left side, with an average of 1.5 ± 0.8 [range 0, 5] prior ablations. The primary safety endpoint was defined as freedom from procedure related Serious Adverse Events (SAEs) through 7-days and at 12-months. At 7-days, freedom from procedure related SAEs was 94.8% (257/271). At 12-months, freedom from procedure related SAEs was 84.4% (184/218). There were no deaths. Acute effectiveness success, defined as the elimination of all identified rotors, occurred in 64.0% (165/258) of treated patients. All patients for which data was reported had at least 1 rotor identified. The most common regions to find rotors were the lateral wall of the right atrium, the anterior/septal wall of the left atrium, and the posterior inferior region of the left atrium. 75.2% (194/258) of patients had at least one rotor identified in the right atrium, and 84.1% (217/258) of patients had at least one rotor identified in the left atrium. Success was defined as two sequential endpoints: single procedure freedom from AF recurrence at 3-months and single procedure freedom from AF recurrence. At 12-months, success was achieved in 46.4% (13/28) Paroxysmal, 42.9% (87/203) Persistent, and 0% (0/9) Long Standing AF subjects. Conclusions: Since acute success was reported as being achieved in only ∼2/3 of the treated subjects, it is possible that the full potential benefit of the FIRM-guided ablation was hidden in this evaluation of the full cohort. Considering the previous ablation and disease history of subjects, a single-procedure success rate at 12-months over 40% was considered a positive result. Based on these results, FIRM-guided RF ablation in conjunction with conventional RF ablation practices is both a safe and effective treatment strategy for patients with symptomatic AF.


Sign in / Sign up

Export Citation Format

Share Document