Human eNOS gene delivery attenuates cold-induced elevation of blood pressure in rats

2005 ◽  
Vol 289 (3) ◽  
pp. H1161-H1168 ◽  
Author(s):  
Xiuqing Wang ◽  
Robert Cade ◽  
Zhongjie Sun

We previously showed that chronic cold exposure inhibits endothelial nitric oxide synthase (eNOS) expression and decreases nitric oxide (NO) production. The aim of the present study was to evaluate the possible role of the NO system in the development of cold-induced hypertension (CIH) by testing the hypothesis that adenoviral delivery of human eNOS gene increases NO production and attenuates CIH in rats. The effect of in vivo delivery of adenovirus carrying human eNOS full-length cDNA (rAdv.heNOS) on CIH was tested using four groups of Sprague-Dawley rats (6 rats/group). Blood pressure (BP) did not differ among the four groups during the control period at room temperature (24°C). Two groups of rats received intravenous injection of rAdv.heNOS (1 × 109plaque-forming units/rat), and the other two groups received the same dose of rAdv.LacZ to serve as controls. After gene delivery, one rAdv.heNOS-treated group and one rAdv.LacZ-treated group were exposed to cold (6°C) while the remaining groups were kept at 24°C. We found that the BP of the rAdv.LacZ group increased significantly within 1 wk of exposure to cold and reached a peak level at week 5 (152.2 ± 6.4 mmHg). In contrast, BP (118.7 ± 8.4 mmHg) of the cold-exposed rAdv.heNOS group did not increase until 5 wk after exposure to cold. The rAdv.heNOS increased plasma and urine levels of NO significantly in cold-exposed rats, which indicates that eNOS gene transfer increased NO production. Notably, rAdv.heNOS decreased plasma levels of norepinephrine and plasma renin activity in cold-exposed rats, which suggests that eNOS gene transfer may decrease the activities of the sympathetic nervous system and the renin-angiotensin system. Immunohistochemical analysis showed that the transferred human eNOS was expressed in both endothelium and adventitia of mesenteric arteries. We conclude that 1) eNOS gene transfer attenuates CIH by increasing NO production and inhibiting the sympathetic nervous system and the renin-angiotensin system; and 2) the NO system appears to mediate this nongenetic, nonpharmacological, nonsurgical model of hypertension.

2014 ◽  
pp. 13-26 ◽  
Author(s):  
J. ZICHA ◽  
Z. DOBEŠOVÁ ◽  
M. BEHULIAK ◽  
M. PINTÉROVÁ ◽  
J. KUNEŠ ◽  
...  

High blood pressure (BP) of spontaneously hypertensive rats (SHR) is maintained by enhanced activity of sympathetic nervous system (SNS), whereas that of Ren-2 transgenic rats (Ren-2 TGR) by increased activity of renin-angiotensin system (RAS). However, both types of hypertension are effectively attenuated by chronic blockade of L-type voltage-dependent calcium channel (L-VDCC). The aim of our study was to evaluate whether the magnitude of BP response elicited by acute nifedipine administration is proportional to the alterations of particular vasoactive systems (SNS, RAS, NO) known to modulate L-VDCC activity. We therefore studied these relationships not only in SHR, in which mean arterial pressure was modified in a wide range of 100-210 mm Hg by chronic antihypertensive treatment (captopril or hydralazine) or its withdrawal, but also in rats with augmented RAS activity such as homozygous Ren-2 TGR, pertussis toxin-treated SHR or L-NAME-treated SHR. In all studied groups the magnitude of BP response to nifedipine was proportional to actual BP level and it closely correlated with BP changes induced by acute combined blockade of RAS and SNS. BP response to nifedipine is also closely related to the degree of relative NO deficiency. This was true for both SNS- and RAS-dependent forms of genetic hypertension, suggesting common mechanisms responsible for enhanced L-VDCC opening and/or their upregulation in hypertensive animals. In conclusions, BP response to nifedipine is proportional to the vasoconstrictor activity exerted by both SNS and RAS, indicating a key importance of these two pressor systems for actual L-VDCC opening necessary for BP maintenance.


1995 ◽  
Vol 268 (6) ◽  
pp. H2267-H2273 ◽  
Author(s):  
A. Zanchi ◽  
N. C. Schaad ◽  
M. C. Osterheld ◽  
E. Grouzmann ◽  
J. Nussberger ◽  
...  

This study was designed to assess the role of renin and of the sympathoadrenal system in the maintenance of the hypertension induced by chronic nitric oxide synthase (NOS) inhibition in rats kept on a normal (RS) or a low-sodium (LS) diet. With the administration of NG-nitro-L-arginine methyl ester (L-NAME) in drinking water (0.4 milligrams) for 6 wk, mean intra-arterial blood pressure rose to a similar extent to 201 mmHg in the RS and 184 mmHg in the LS animals. Simultaneously, plasma norepinephrine was increased to 838 and 527 pg/ml and epinephrine to 2,041 and 1,341 pg/ml in RS and LS, respectively. Plasma neuropeptide Y levels did not change. Plasma renin activity rose to 21 ng.ml-1.h-1 in RS but remained at 44 ng.ml-1.h-1 in the LS. Both losartan (10 mg/kg) and phentolamine (0.1 mg/kg) intravenous bolus injections reduced blood pressure considerably in the L-NAME hypertensive animals. Whole brain NOS activity was reduced by 84%. Hypertension induced by chronic NOS inhibition in LS as well as in RS fed rats seems to be sustained by an interaction of several mechanisms, including the activation of the sympathetic nervous system and the renin-angiotensin system.


2006 ◽  
Vol 291 (5) ◽  
pp. F932-F944 ◽  
Author(s):  
Kim E. Jie ◽  
Marianne C. Verhaar ◽  
Maarten-Jan M. Cramer ◽  
Karien van der Putten ◽  
Carlo A. J. M. Gaillard ◽  
...  

We have recently proposed severe cardiorenal syndrome (SCRS), in which cardiac and renal failure mutually amplify progressive failure of both organs. This frequent pathophysiological condition has an extremely poor prognosis. Interactions between inflammation, the renin-angiotensin system, the balance between the nitric oxide and reactive oxygen species and the sympathetic nervous system form the cardiorenal connectors and are cornerstones in the pathophysiology of SCRS. An absolute deficit of erythropoietin (Epo) and decreased sensitivity to Epo in this syndrome both contribute to the development of anemia, which is more pronounced than renal anemia in the absence of heart failure. Besides expression on erythroid progenitor cells, Epo receptors are present in the heart, kidney, and vascular system, in which activation results in antiapoptosis, proliferation, and possibly antioxidation and anti-inflammation. Interestingly, Epo can improve cardiac and renal function. We have therefore reviewed the literature with respect to Epo and the cardiorenal connectors. Indeed, there are indications that Epo can diminish inflammation, reduce renin-angiotensin system activity, and shift the nitric oxide and reactive oxygen species balance toward nitric oxide. Information about Epo and the sympathetic nervous system is scarce. This analysis underscores the relevance of a further understanding of clinical and cellular mechanisms underlying protective effects of Epo, because this will support better treatment of SCRS.


2015 ◽  
pp. 447-457 ◽  
Author(s):  
A. BRUNOVÁ ◽  
M. BENCZE ◽  
M. BEHULIAK ◽  
J. ZICHA

Principal vasoactive systems – renin-angiotensin system (RAS), sympathetic nervous system (SNS), nitric oxide (NO) and prostanoids – exert their vascular effects through the changes in calcium levels and/or calcium sensitization. To estimate a possible modulation of calcium sensitization by the above vasoactive systems, we studied the influence of acute and chronic blockade of particular vasoactive systems on blood pressure (BP) changes elicited in conscious normotensive rats by acute dose-dependent administration of Rho-kinase inhibitor fasudil. Adult male chronically cannulated Wistar rats were used throughout this study. The acute inhibition of NO synthase (NOS) by L-NAME enhanced BP response to fasudil, the effect being considerably augmented in rats deprived of endogenous SNS. The acute inhibition of prostanoid synthesis by indomethacin modified BP response to fasudil less than the acute NOS inhibition. The chronic NOS inhibition caused moderate BP elevation and a more pronounced augmentation of fasudil-induced BP changes compared to the effect of acute NOS inhibition. This indicates both short-term and long-term NO-dependent attenuation of calcium sensitization. Long-term inhibition of RAS by captopril caused a significant attenuation of BP changes elicited by fasudil. In contrast, a long-term attenuation of SNS by chronic guanethidine treatment (in youth or adulthood) had no effect on BP response to fasudil, suggesting the absence of SNS does not affect calcium sensitization in vascular smooth muscle of normotensive rats. In conclusion, renin-angiotensin system contributes to the long-term increase of calcium sensitization and its effect is counterbalanced by nitric oxide which decreases calcium sensitization in Wistar rats.


2019 ◽  
Vol 20 (1) ◽  
pp. 147032031983440 ◽  
Author(s):  
Zhongming Zhang ◽  
Yijing Zhang ◽  
Yan Wang ◽  
Shengchen Ding ◽  
Chenhui Wang ◽  
...  

Introduction: Brain-derived neurotropic factor (BDNF) is expressed throughout the central nervous system and peripheral organs involved in the regulation of blood pressure, but the systemic effects of BDNF in the control of blood pressure are not well elucidated. Materials and methods: We utilized loxP flanked BDNF male mice to cross with nestin-Cre female mice to generate nerve system BDNF knockdown mice, nestin-BDNF (+/–), or injected Cre adenovirus into the subfornical organ to create subfornical organ BDNF knockdown mice. Histochemistry was used to verify injection location. Radiotelemetry was employed to determine baseline blood pressure and pressor response to angiotensin II (1000 ng/kg/min). Real-time polymerase chain reaction was used to measure the expression of renin–angiotensin system components in the laminal terminalis and peripheral organs. Results: Nestin-BDNF (+/–) mice had lower renin–angiotensin system expression in the laminal terminalis and peripheral organs including the gonadal fat pad, and a lower basal blood pressure. They exhibited an attenuated hypertensive response and a weak or similar modification of renin–angiotensin system component expression to angiotensin II infusion. Subfornical organ BDNF knockdown was sufficient for the attenuation of angiotensin II-induced hypertension. Conclusion: Central BDNF, especially subfornical organ BDNF is involved in the maintenance of basal blood pressure and in augmentation of hypertensive response to angiotensin II through systemic regulation of the expression of renin–angiotensin system molecules.


Sign in / Sign up

Export Citation Format

Share Document