Effect of fatty acid oxidation on efficiency of energy production in rat heart

1985 ◽  
Vol 249 (4) ◽  
pp. H723-H728 ◽  
Author(s):  
J. F. Hutter ◽  
H. M. Piper ◽  
P. G. Spieckerman

Myocardial fatty acid oxidation has been reported to be accompanied by an elevated O2 consumption compared with carbohydrate oxidation. The exact amount of this additional O2 consumption is controversial. Different investigators have observed an O2 wasting effect that is too large to be explained by the different ATP-to-O2 ratios of these substrates. With the use of isolated perfused rat hearts, O2 consumption and hemodynamic measurements were computer analyzed to provide on-line estimates of the ratio between O2 consumption and demand (EQ). Increasing palmitate or octanoate concentrations decreased the respiratory quotient, which was accompanied by a disproportionate increase of EQ. Inhibition of fatty acid oxidation by an inhibitor of acylcarnitine transferase or a blockade of mitochondrial thiolase caused a drastic reduction of fatty acid oxidation. The fatty acid-induced enhancement of O2 consumption was decreased to a much smaller extent, indicating that there are two different mechanisms responsible for the O2-wasting effect, one that depends on mitochondrial fatty acid oxidation and another that is not affected by an inhibition of this pathway.

2004 ◽  
Vol 279 (19) ◽  
pp. 19574-19579 ◽  
Author(s):  
Aneta E. Reszko ◽  
Takhar Kasumov ◽  
France David ◽  
Kathryn A. Jobbins ◽  
Katherine R. Thomas ◽  
...  

Little is known about the sources of acetyl-CoA used for the synthesis of malonyl-CoA, a key regulator of mitochondrial fatty acid oxidation in the heart. In perfused rat hearts, we previously showed that malonyl-CoA is labeled from both carbohydrates and fatty acids. This study was aimed at assessing the mechanisms of incorporation of fatty acid carbons into malonyl-CoA. Rat hearts were perfused with glucose, lactate, pyruvate, and a fatty acid (palmitate, oleate or docosanoate). In each experiment, substrates were13C-labeled to yield singly or/and doubly labeled acetyl-CoA. The mass isotopomer distribution of malonyl-CoA was compared with that of the acetyl moiety of citrate, which reflects mitochondrial acetyl-CoA. In the presence of labeled glucose or lactate/pyruvate, the13C labeling of malonyl-CoA was up to 2-fold lower than that of mitochondrial acetyl-CoA. However, in the presence of a fatty acid labeled in its first acetyl moiety, the13C labeling of malonyl-CoA was up to 10-fold higher than that of mitochondrial acetyl-CoA. The labeling of malonyl-CoA and of the acetyl moiety of citrate is compatible with peroxisomal β-oxidation forming C12and C14acyl-CoAs and contributing >50% of the fatty acid-derived acetyl groups that end up in malonyl-CoA. This fraction increases with the fatty acid chain length. By supplying acetyl-CoA for malonyl-CoA synthesis, peroxisomal β-oxidation may participate in the control of mitochondrial fatty acid oxidation in the heart. In addition, this pathway may supply some acyl groups used in protein acylation, which is increasingly recognized as an important regulatory mechanism for many biochemical processes.


2019 ◽  
Author(s):  
Helena Urquijo ◽  
Emma N Panting ◽  
Roderick N Carter ◽  
Emma J Agnew ◽  
Caitlin S Wyrwoll ◽  
...  

1991 ◽  
Vol 266 (34) ◽  
pp. 22932-22938
Author(s):  
R.S. Kler ◽  
S. Jackson ◽  
K. Bartlett ◽  
L.A. Bindoff ◽  
S. Eaton ◽  
...  

1996 ◽  
Vol 16 (2) ◽  
pp. 117-124 ◽  
Author(s):  
MOHAMED A. NADA ◽  
CHRISTINE VIANEY-SABAN ◽  
CHARLES R. ROE ◽  
JIA-HUAN DING ◽  
MONIQUE MATHIEU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document