Analysis of responses to bradykinin and influence of HOE 140 in the isolated perfused rat lung

1994 ◽  
Vol 266 (6) ◽  
pp. H2452-H2461 ◽  
Author(s):  
B. D. Nossaman ◽  
C. J. Feng ◽  
P. J. Kadowitz

The inhibitory effects of HOE 140, a novel bradykinin B2 receptor antagonist, on pulmonary vascular and airway responses to bradykinin (BK) were investigated under conditions of controlled pulmonary blood flow and ventilation and constant left atrial pressure in the isolated blood-perfused rat lung. Under baseline conditions, BK produced dose-related increases in pulmonary arterial perfusion pressure without changing airway pressure. However, when pulmonary arterial pressure was raised to a high steady level, increases in pulmonary arterial pressure in response to BK were enhanced and BK then produced dose-related increases in airway pressure. Responses to BK were reproducible with respect to time and were not different when the inspired fraction of O2 was 0.21 or 0.95 and HOE 140 was 0.8 nM/ml (50 micrograms/kg) and decreased both pulmonary vascular and airway responses to the peptide. HOE 140 had no significant effect on pulmonary vascular responses to angiotensin II, serotonin, nitric oxide, sodium nitroprusside, albuterol, or pinacidil. Additionally, in these experiments, HOE 140 had no effect on the pulmonary arterial pressor response to ventilatory hypoxia. These results suggest BK has significant vasoconstrictor and bronchoconstrictor effects that are mediated by B2 receptors and are dependent on the baseline level of tone in the airways and in the pulmonary vascular bed. The present results suggest that HOE 140 is a highly selective, BK B2 receptor antagonist in the pulmonary vascular bed of the rat. These data also suggest that HOE 140 may be a useful probe for studying the role of BK in the pulmonary vascular bed in physiological and pathophysiological conditions.

1995 ◽  
Vol 268 (6) ◽  
pp. H2211-H2215 ◽  
Author(s):  
J. Heaton ◽  
B. Lin ◽  
J. K. Chang ◽  
S. Steinberg ◽  
A. Hyman ◽  
...  

The present study investigates the effects of human adrenomedullin (ADM) on the pulmonary vascular bed of isolated, blood-perfused rat lung. Because pulmonary blood flow and left atrial pressure were constant, changes in pulmonary arterial pressure directly reflect changes in pulmonary vascular resistance. Under conditions of resting (low) pulmonary vasomotor tone, intra-arterial bolus injections of ADM-(1-52) and two truncated sequences of ADM-(1-52) [ADM-(1-12) and ADM-(13-52)] did not alter pulmonary arterial pressure. When pulmonary vasomotor tone was increased by U-46619, a thromboxane A2 mimic, intra-arterial bolus injections of ADM-(1-52) and ADM-(13-52) at similar doses produced similar, dose-dependent reductions in pulmonary arterial pressure. On a molar basis, ADM-(1-52) had greater pulmonary vasodilator activity than isoproterenol. In contrast, ADM-(1-12) had no activity. When pulmonary vasomotor tone was actively increased to the same level using KCl, the pulmonary vasodilator activity of ADM-(13-52) was decreased 10-fold. The present data demonstrate that ADM-(1-52) dilates the pulmonary vascular bed and suggest that the pulmonary vasodilator activity of ADM is greater on pulmonary blood vessels preconstricted through a receptor-dependent mechanism. Because meclofenamate, nitro-L-arginine methyl ester, methysergide, BW A-1433U83, U-37883A, and calcitonin gene-related peptide [CGRP-(8-37)], a CGRP-receptor antagonist, did not alter the pulmonary vasodilator response to ADM-(1-52), the present data suggest that ADM dilates the pulmonary vascular bed independently of cyclooxygenase products, endothelium-derived relaxation factor, serotoninergic receptors, adenosine1 purinoreceptors, ATP-dependent potassium channels, and CGRP receptors.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 306 (1) ◽  
pp. H33-H40 ◽  
Author(s):  
Edward A. Pankey ◽  
Andrea Zsombok ◽  
George F. Lasker ◽  
Philip J. Kadowitz

The transient receptor potential vanilloid 4 (TRPV4) channel is a nonselective cation channel expressed on many cell types, including the vascular endothelium and smooth muscle cells. TRPV4 channels play a role in regulating vasomotor tone and capillary permeability. The present study was undertaken to investigate responses to the TRPV4 agonist GSK101790A on the pulmonary and systemic vascular beds in the rat. Intravenous injection of GSK1016790A at doses of 2–10 μg/kg produced dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and small increases in cardiac output, and responses were not altered by the cyclooxygenase inhibitor meclofenamate or the cytochrome P-450 inhibitor miconazole. Injection of GSK1016790A at a dose of 12 μg/kg iv produced cardiovascular collapse that was reversible in some animals. GSK1016790A produced dose-related decreases in pulmonary and systemic arterial pressure when baseline tone in the pulmonary vascular bed was increased with U-46619. After treatment with the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester, GSK1016790A produced larger decreases in systemic arterial pressure and dose-dependent increases in pulmonary arterial pressure followed by a small decrease. These results demonstrate that GSK1016790A has vasodilator activity in pulmonary and systemic vascular beds and that when NOS is inhibited, GSK1016790A produced pulmonary vasoconstrictor responses that were attenuated by the L-type Ca2+ channel antagonist isradipine. The presence of TRPV4 immunoreactivity was observed in small pulmonary arteries and airways. The present data indicate that responses to TRPV4 are modulated differently by NOS in pulmonary and systemic vascular beds and are attenuated by the TRPV4 antagonist GSK2193874.


1991 ◽  
Vol 69 (2) ◽  
pp. 211-214 ◽  
Author(s):  
R. K. Minkes ◽  
B. D. Nossaman ◽  
P. Kvamme ◽  
P. J. Kadowitz

Pulmonary vascular responses to endothelin-2 and sarafotoxin 6b were investigated in the feline pulmonary vascular bed under natural flow and constant flow conditions. Injections of endothelin-2 and sarafotoxin 6b in a dose of 0.3 nmol/kg iv increased pulmonary arterial and left atrial pressures and cardiac output, and caused a biphasic change in calculated pulmonary vascular resistance. Endothelin-2 caused a biphasic change in systemic arterial pressure, while sarafotoxin 6b only decreased arterial pressure. Under constant flow conditions in the intact-chest cat, injections of endothelin-2 and sarafotoxin 6b in doses of 0.1–1 nmol into the perfused lobar artery increased lobar arterial pressure in a dose-related manner but were less potent than the thromboxane A2 mimic, U46619. An ET analog with only the Cys1–Cys15 disulfide bond and an amidated carboxy terminus had no significant activity in the pulmonary vascular bed. The present data show that endothelin-2 and sarafotoxin 6b have significant vasoconstrictor activity in the pulmonary vascular bed of the cat.Key words: pulmonary circulation, endothelin-2, sarafotoxin 6b.


1993 ◽  
Vol 75 (4) ◽  
pp. 1890-1896 ◽  
Author(s):  
K. N. DeCampos ◽  
T. K. Waddell ◽  
A. S. Slutsky ◽  
M. Post ◽  
G. A. Patterson

Understanding the physiological significance of biochemical events after lung preservation in rats has been hampered by the lack of a suitable model for physiological assessment. We have developed an ex vivo paracorporeal rat lung perfusion model that permits hemodynamic and gas exchange evaluation of lung function. After anesthesia and heparinization, the heart-lung block was removed and the left lung was reperfused for 1 h at a constant flow of 4 ml/min with homologous venous blood drained from the inferior vena cava of the paracorporeal (host) rat. The lung effluent was returned at the same flow rate to the host distal aorta. The model was validated by the assessment of lung function after room temperature ischemia. Animals were allocated into three groups (n = 6) according to the ischemic interval (group 1, 20 min; group 2, 3 h; group 3, 4 h). In groups 1 and 2, PO2, PCO2, mean airway pressure, and pulmonary arterial pressure were within the normal ranges and stable throughout the experiment. In contrast, lungs in group 3 demonstrated higher pulmonary arterial pressure and lower blood effluent PO2 than were found in either group 1 or 2. A significant weight gain during reperfusion was observed only in group 3 (4.23 +/- 0.9 g; P < 0.002). For each lung, the final blood effluent PO2 correlated with the weight gain (R2 = 0.81; P < 0.0001). Our results indicate that this model can be used reliably to detect lung dysfunction after ischemic injury.


1984 ◽  
Vol 57 (1) ◽  
pp. 205-212 ◽  
Author(s):  
T. J. Gregory ◽  
M. L. Ellsworth ◽  
J. C. Newell

We examined the effects of hypoxia and pulsatile flow on the pressure-flow relationships in the isolated perfused lungs of Fitch ferrets. When perfused by autologous blood from a pump providing a steady flow of 60 ml/min, the mean pulmonary arterial pressure rose from 14.6 to 31.3 Torr when alveolarPO2 was reduced from 122 to 46 Torr. This hypoxic pressor response was characterized by a 10.1-Torr increase in the pressure-axis intercept of the extrapolated pressure-flow curves and an increase in the slope of these curves from 130 to 240 Torr X l–1 X min. With pulsatile perfusion from a piston-typepump, mean pulmonary arterial pressure increased from 17.5 to 36.3 Torr at the same mean flow.Thishypoxic pressor response was also characterized by increases in the intercept pressure and slope of thepressure-flow curves. When airway pressure was raised during hypoxia, the intercept pressure increased further to 25 +/- 1 Torr with a further increase in vascular resistance to 360 Torr X l–1 X min. Thus, in contrast to the dog lung, in the ferret lung pulsatile perfusion does not result in lower perfusion pressures during hypoxia when compared with similar mean levels of steady flow. Since the effects of high airway pressure and hypoxia are additive, they appear to act at or near the same site in elevating perfusion pressure.


2005 ◽  
Vol 289 (6) ◽  
pp. H2491-H2496 ◽  
Author(s):  
Hans Wahn ◽  
Jürgen Wolf ◽  
Florian Kram ◽  
Stefan Frantz ◽  
Jens A. Wagner

Several cannabinoids elicit systemic vasodilation, mainly via CB1 cannabinoid and vanilloid receptors. However, effects in the pulmonary circulation are unknown. Using the isolated, ventilated, buffer-perfused rabbit lung, we have shown that the endocannabinoids arachidonyl ethanolamide (anandamide) and 2-arachidonyl glycerol (2-AG) dose-dependently increase pulmonary arterial pressure (+19.9 ± 3.4 mmHg, 5 μM, and +39.5 ± 10.8 mmHg, 0.4 μM, respectively). 2-AG induced lung edema. The CB1 receptor antagonist AM-251 (0.1 and 5 μM) and the VR1 vanilloid receptor antagonist capsazepine (10 μM) failed to reduce anandamide's effects. The metabolically stable anandamide and 2-AG analogs R-methanandamide and noladin ether, Δ9-tetrahydrocannabinol, and the synthetic cannabinoid HU-210, which is no arachidonic acid product, were without effect. The unspecific cyclooxygenase (COX) inhibitor aspirin (100 μM, P < 0.001) and the specific COX-2 inhibitor nimesulide (10 μM, P < 0.01) completely prevented pulmonary hypertension after 5 μM anandamide. COX-2 RNA was detected in rabbit lungs. The synthetic thromboxane receptor antagonist SQ 29,548 was without effect, but the specific EP1 prostanoid receptor antagonist SC-19220 (100 μM) inhibited the pressure increase after anandamide ( P < 0.05). PCR analysis detected fatty acid amidohydrolase (FAAH), an enzyme that degrades endocannabinoids, in rabbit lung tissue. Furthermore, the specific FAAH inhibitor methyl arachidonyl fluorophosphonate (0.1 μM) blocked pressure effects of anandamide ( P < 0.01). Finally, anandamide (99 ± 55 pmol/g) and 2-AG (19.6 ± 8.4 nmol/g) were found in native lungs. We conclude that anandamide increases pulmonary arterial pressure via COX-2 metabolites following enzymatic degradation by FAAH into arachidonic acid products.


1991 ◽  
Vol 71 (5) ◽  
pp. 1990-1995 ◽  
Author(s):  
R. Burger ◽  
A. C. Bryan

Previous studies showed that repeated lung lavage leads to a severe lung injury with very poor gas exchange, a substantial protein leak into the alveoli with hyaline membrane formation, pulmonary hypertension, and migration of granulocytes (PMN) into the alveolar spaces. Depletion of PMN leads to a better gas exchange and a markedly decreased protein leak with only scanty hyaline membranes. In this study we show that there is sustained pulmonary hypertension after the lung lavage, but in PMN-depleted rabbits there is no postlavage increase in pulmonary arterial pressure. Changing the shunt fraction by manipulating mean airway pressure still leads to a hypoxic vasoconstriction with increase of pulmonary arterial pressure. Thus, after lung lavage, pulmonary reactivity to hypoxia is still preserved. Comparisons between high-frequency ventilation and conventional mechanical ventilation at the same mean airway pressures showed that equal mean airway pressure in these two very different modes of ventilation do not translate into the same mean functional lung volumes.


2008 ◽  
Vol 294 (2) ◽  
pp. R601-R605 ◽  
Author(s):  
Bodil Petersen ◽  
Maria Deja ◽  
Roland Bartholdy ◽  
Bernd Donaubauer ◽  
Sven Laudi ◽  
...  

Endogenous endothelin (ET)-1 modulates hypoxic pulmonary vasoconstriction (HPV). Accordingly, intravenously applied ETAreceptor antagonists reduce HPV, but this is accompanied by systemic vasodilation. We hypothesized that inhalation of an ETAreceptor antagonist might act selectively on the pulmonary vasculature and investigated the effects of aerosolized LU-135252 in an experimental model of HPV. Sixteen piglets (weight: 25 ± 1 kg) were anesthetized and mechanically ventilated at an inspiratory oxygen fraction (FiO2) of 0.3. After 1 h of hypoxia at FiO20.15, animals were randomly assigned either to receive aerosolized LU-135252 as bolus (0.3 mg/kg for 20 min; n = 8, LU group), or to receive aerosolized saline ( n = 8, controls). In all animals, hypoxia significantly increased mean pulmonary arterial pressure (32 ± 1 vs. 23 ± 1 mmHg; P < 0.01; means ± SE) and increased arterial plasma ET-1 (0.52 ± 0.04 vs. 0.37 ± 0.05 fmol/ml; P < 0.01) compared with mild hyperoxia at FiO20.3. Inhalation of LU-135252 induced a significant and sustained decrease in mean pulmonary arterial pressure compared with controls (LU group: 27 ± 1 mmHg; controls: 32 ± 1 mmHg; values at 4 h of hypoxia; P < 0.01). In parallel, mean systemic arterial pressure and cardiac output remained stable and were not significantly different from control values. Consequently, in our experimental model of HPV, the inhaled ETAreceptor antagonist LU-135252 induced selective pulmonary vasodilation without adverse systemic hemodynamic effects.


1975 ◽  
Vol 38 (5) ◽  
pp. 907-912 ◽  
Author(s):  
R. H. Demling ◽  
N. C. Staub ◽  
L. H. Edmunds

The effect of end-expiratory airway pressure on the accumulation of extravascular lung water during lobar venous occlusion for 2 h was studied in closed-chest artifically ventilated dogs. Dogs were divided into two groups by end-expiratory airway pressures of 0 or 10 cmH2O. High-pressure lobar pulmonary edema was produced by lobar venous occlusion, which elevated microvascular hydrostatic pressure. After occlusion of the lobar pulmonary vein, lobar venous pressure (and microvascular hydrostatic pressure) rapidly became identical to pulmonary arterial pressure. We measured extravascular lung water (post mortem) and pulmonary arterial pressure and calculated plasma colloid osmotic pressure to determine the relationship between the accumulation of lung water and the difference between pulmonary microvascular pressure and plasma colloid osmotic pressure (net intravascular filtration pressure). At comparable net intravascular filtration pressures, dogs ventilated at the higher end-expiratory airway pressure accumulated more extravascular lung water. This study indicates that increasing end-expiratory airway pressure from zero to 10 cmH2O increases the accumulation of extravascular lung water when microvascular hydrostatic pressure is raised.


1975 ◽  
Vol 229 (4) ◽  
pp. 941-946 ◽  
Author(s):  
PJ Kadowitz ◽  
BM Chapnick ◽  
PD Joiner ◽  
AL Hyman

The effects of two chemically dissimilar inhibitors of prostaglandin (PG) synthesis on vascular resistance and responses to pressor and depressor hormones were evaluated in the canine pulmonary vascular bed. Indomethacin or meclofenamate, 2.5-5 mg/kg iv, increased lobar arterial pressure. Since lobar blood flow was held constant and left atrial pressure did not change, the rise in pressure reflects an increase in vascular resistance. The rise in lobar pressure after indomethacin occurred in the absence of a change in lobar venous or translobar airway pressure. This agent enhanced the response to angiotensin but not to norepinephrine. Meclofenamate decreased responses to both agents. Indomethacin enhanced the dilator response to PGE1 and both indomethacin and meclofenamate increased the response to PGF2alpha. These data indicate that the rise in resistance after indomethacin or meclofenamate was the result of vasoconstriction in vessels upstream to the small veins, presumed to be small arteries. These data are consistent with the hypothesis that under resting conditions synthesis of a dilator prostaglandin may be important for the maintenance of the pulmonary vascular bed in a dilated state. However, results of the present study are not consistent with the postulate that prostaglandins modulate responses to norepinephrine but suggest that indomethacin and meclofenamate interfere with the inactivation of PGF2alpha and PGE1 in the lung.


Sign in / Sign up

Export Citation Format

Share Document