Determinants of action potential initiation in isolated rabbit atrial and ventricular myocytes

1998 ◽  
Vol 274 (6) ◽  
pp. H1902-H1913 ◽  
Author(s):  
David A. Golod ◽  
Rajiv Kumar ◽  
Ronald W. Joyner

Action potential conduction through the atrium and the ventricle of the heart depends on the membrane properties of the atrial and ventricular cells, particularly with respect to the determinants of the initiation of action potentials in each cell type. We have utilized both current- and voltage-clamp techniques on isolated cells to examine biophysical properties of the two cell types at physiological temperature. The resting membrane potential, action potential amplitude, current threshold, voltage threshold, and maximum rate of rise measured from atrial cells (−80 ± 1 mV, 109 ± 3 mV, 0.69 ± 0.05 nA, −59 ± 1 mV, and 206 ± 17 V/s, respectively; means ± SE) differed significantly ( P < 0.05) from those values measured from ventricular cells (−82.7 ± 0.4 mV, 127 ± 1 mV, 2.45 ± 0.13 nA, −46 ± 2 mV, and 395 ± 21 V/s, respectively). Input impedance, capacitance, time constant, and critical depolarization for activation also were significantly different between atrial (341 ± 41 MΩ, 70 ± 4 pF, 23.8 ± 2.3 ms, and 19 ± 1 mV, respectively) and ventricular (16.5 ± 5.4 MΩ, 99 ± 4.3 pF, 1.56 ± 0.32 ms, and 36 ± 1 mV, respectively) cells. The major mechanism of these differences is the much greater magnitude of the inward rectifying potassium current in ventricular cells compared with that in atrial cells, with an additional difference of an apparently lower availability of inward Na current in atrial cells. These differences in the two cell types may be important in allowing the atrial cells to be driven successfully by normal regions of automaticity (e.g., the sinoatrial node), whereas ventricular cells would suppress action potential initiation from a region of automaticity (e.g., an ectopic focus).

1993 ◽  
Vol 265 (2) ◽  
pp. H747-H754 ◽  
Author(s):  
O. Ellingsen ◽  
A. J. Davidoff ◽  
S. K. Prasad ◽  
H. J. Berger ◽  
J. P. Springhorn ◽  
...  

We studied primary short-term cultures of adult rat ventricular myocytes in defined medium to determine whether phenotype and electromechanical function are maintained in rod-shaped, quiescent cells. Although > 80% of the myocytes retained their rod-shaped in vivo morphology for up to 72 h, contractile function as measured by cell edge motion declined 30-50% from 6 to 24 h, paralleling a 68% shortening of action potential duration. From 24 to 72 h, contractility remained unchanged. Ca2+ channel current density increased 55% after 24-48 h and then returned to the level of freshly isolated cells (9 +/- 1 pA/pF, mean +/- SE). Resting membrane potential (-71 +/- 1 mV) and action potential overshoot (34 +/- 3 mV) did not change. The ratio of alpha- to beta-myosin heavy chain mRNA and the level of cardiac alpha-actin mRNA were maintained for 8 days. Thus quiescent adult rat ventricular myocytes in defined medium undergo extensive phenotypic adaptation within 72 h of isolation, despite maintenance of a rod-shaped morphology and stable levels of contractile protein mRNA, which may limit their suitability for electrophysiological and contractile function studies.


Author(s):  
Yeonjoo Yoo ◽  
Fabrizio Gabbiani

Computational modeling is essential to understand how the complex dendritic structure and membrane properties of a neuron process input signals to generate output signals. Compartmental models describe how inputs, such as synaptic currents, affect a neuron’s membrane potential and produce outputs, such as action potentials, by converting membrane properties into the components of an electrical circuit. The simplest such model consists of a single compartment with a leakage conductance which represents a neuron having spatially uniform membrane potential and a constant conductance summarizing the combined effect of every ion flowing across the neuron’s membrane. The Hodgkin-Huxley model introduces two additional active channels; the sodium channel and the delayed rectifier potassium channel whose associated conductances change depending on the membrane potential and that are described by an additional set of three nonlinear differential equations. Since its conception in 1952, many kinds of active channels have been discovered with a variety of characteristics that can successfully be modeled within the same framework. As the membrane potential varies spatially in a neuron, the next refinement consists in describing a neuron as an electric cable to account for membrane potential attenuation and signal propagation along dendritic or axonal processes. A discrete version of the cable equation results in compartments with possibly different properties, such as different types of ion channels or spatially varying maximum conductances to model changes in channel densities. Branching neural processes such as dendrites can be modeled with the cable equation by considering the junctions of cables with different radii and electrical properties. Single neuron computational models are used to investigate a variety of topics and reveal insights that cannot be evidenced directly by experimental observation. Studies on action potential initiation and on synaptic integration provide prototypical examples illustrating why computational models are essential. Modeling action potential initiation constrains the localization and density of channels required to reproduce experimental observations, while modeling synaptic integration sheds light on the interaction between the morphological and physiological characteristics of dendrites. Finally, reduced compartmental models demonstrate how a simplified morphological structure supplemented by a small number of ion channel-related variables can provide clear explanations about complex intracellular membrane potential dynamics.


1988 ◽  
Vol 59 (2) ◽  
pp. 408-423 ◽  
Author(s):  
S. Gurtu ◽  
P. A. Smith

1. The active and passive membrane properties of neurons in the lower lumbar (L6, L7) or sacral (S1) dorsal root ganglia from golden hamsters were examined in vitro by means of conventional intracellular recording techniques. Data were collected from neurons exhibiting action potentials (AP) of 70 mV or more in amplitude. 2. Cells with axonal conduction velocities (CV) greater than 20 m/s were termed fast-A-cells, those with CVs between 2.5 and 20 m/s were termed A-delta-cells, and those with CVs less than 1 m/s were termed C-cells. 3. Fast-A-cells usually exhibited short-duration APs (2.51 +/- 0.41 ms, n = 19) followed by short (less than 50 ms) afterhyperpolarizations (AHPs). C-cells usually exhibited long-duration APs (10.5 +/- 0.69 ms, n = 18) followed by long-duration AHPs (much greater than 50 ms). The characteristics of APs in A-delta-cells (AP mean duration 3.34 +/- 0.42 ms, n = 32) were intermediate between those of fast-A- and C-cells. Long AHPs (duration much greater than 50 ms) were manifest in 43.8% of A-delta-cells. 4. A time-dependent sag in hyperpolarizing electrotonic potentials (rectification) was found in 68.8% of fast-A-cells, 45.5% of A-delta-cells, and 62.5% of C-cells. 5. To examine neuronal properties 1-6 wk after transection of the sciatic nerve (axotomy), cells were reclassified as SAP (short action potential) cells and LAP (long action potential) cells. Cells in the SAP category had AP durations less than 5 ms and included all fast-A-cells and the majority of A-delta-cells. The LAP category included cells with AP durations greater than 8 ms contained only C-cells. 6. Axotomy failed to decrease the CV of LAP cells or A-delta-cells in the SAP group. The CV of LAP cells may have increased (P less than 0.05), whereas that of SAP cells was unchanged. 7. The duration of the AP and AHP of SAP cells were slightly increased (0.1 greater than P greater than 0.05), whereas AP and AHP duration of LAP cells were unchanged after axotomy. AHP amplitudes of all cell types tended to be smaller (0.1 greater than P greater than 0.05). Axotomy did not alter the resting membrane potential or reduce the incidence of rectification in any cell type. 8. Invasion of the soma by axonally evoked APs was impeded in all cell types after axotomy even though a decrease (P less than 0.05) in rheobase of SAP cells occurred.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 265 (4) ◽  
pp. H1393-H1400 ◽  
Author(s):  
S. O. McMorn ◽  
S. M. Harrison ◽  
W. J. Zang ◽  
X. J. Yu ◽  
M. R. Boyett

Acetylcholine (ACh) decreased the contraction of rat ventricular cells within 20 s. ACh (3.1 x 10(-8) M) produced a half-maximal effect and 10(-6) M ACh produced a maximal effect (a 23.8 +/- 5.4% decrease; mean +/- SE, n = 11). During a 3-min exposure to ACh, the inotropic effect faded. Parallel changes were observed in action potential duration: ACh caused an immediate shortening of the action potential, but then the effect faded with time. The changes in action potential duration were the cause of the changes in contraction, because ACh had no effect on contraction when the contractions were triggered by voltage-clamp pulses of constant duration. The changes in action potential duration were the result of the activation of a K+ current (iK,ACh) by ACh. During an exposure to ACh, this current faded as a result of desensitization. iK,ACh was 6.3 times smaller in ventricular than in atrial cells. This may explain why the negative inotropic effect of ACh on atrial cells was greater: 1.0 x 10(-8) M ACh produced a half-maximal effect on atrial cells, and 10(-6) M ACh produced a near maximal effect (a 74.5 +/- 9.5% decrease; n = 4).


1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


2007 ◽  
Vol 292 (1) ◽  
pp. R388-R395 ◽  
Author(s):  
Cristina E. Molina ◽  
Hans Gesser ◽  
Anna Llach ◽  
Lluis Tort ◽  
Leif Hove-Madsen

Application of the current-clamp technique in rainbow trout atrial myocytes has yielded resting membrane potentials that are incompatible with normal atrial function. To investigate this paradox, we recorded the whole membrane current ( Im) and compared membrane potentials recorded in isolated cardiac myocytes and multicellular preparations. Atrial tissue and ventricular myocytes had stable resting potentials of −87 ± 2 mV and −83.9 ± 0.4 mV, respectively. In contrast, 50 out of 59 atrial myocytes had unstable depolarized membrane potentials that were sensitive to the holding current. We hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at −120 mV from 4.3 pA/pF to 27 pA/pF with an EC50 of 45 nM in atrial myocytes. Moreover, 3 nM ACh increased the slope conductance of Im fourfold, shifted its reversal potential from −78 ± 3 to −84 ± 3 mV, and stabilized the resting membrane potential at −92 ± 4 mV. ACh also shortened the action potential in both atrial myocytes and tissue, and this effect was antagonized by atropine. When applied alone, atropine prolonged the action potential in atrial tissue but had no effect on membrane potential, action potential, or Im in isolated atrial myocytes. This suggests that ACh-mediated activation of an inwardly rectifying K+ current can modulate the membrane potential in the trout atrial myocytes and stabilize the resting membrane potential.


Sign in / Sign up

Export Citation Format

Share Document