Endothelial cell protein kinase G inhibits release of EDHF through a PKG-sensitive cation channel

2001 ◽  
Vol 280 (3) ◽  
pp. H1272-H1277 ◽  
Author(s):  
K. A. Dora ◽  
C. J. Garland ◽  
H. Y. Kwan ◽  
X. Yao

The release of dilator agents from vascular endothelial cells is modulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). In this study, we demonstrate the presence of a Ca2+-permeable cation channel in inside-out membrane patches of endothelial cells isolated from small mesenteric arteries. The activity of the channel is increased by KT-5823, a highly selective inhibitor of protein kinase G (PKG), while it is decreased by direct application of active PKG. Application of KT-5823 induces Ca2+ influx in the endothelial cells isolated from small mesenteric arteries, and it also causes endothelium-dependent relaxations in isolated small mesenteric arteries. KT-5823-induced relaxations in small mesenteric arteries are greatly reduced by 35 mM K+ or 50 nM charybdotoxin + 50 nM apamin, suggesting that endothelium-derived hyperpolarizing factor (EDHF) is the participating dilator. The involvement of EDHF is further supported by experiments in which the relaxations of small mesenteric arteries are shown to be accompanied by membrane repolarization. These data strongly argue for a major role of a PKG-sensitive cation channel in modulating the release of EDHF from endothelial cells in rat small mesenteric arteries.

2012 ◽  
Vol 26 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Kazuhito Tawaramoto ◽  
Ko Kotani ◽  
Mitsuru Hashiramoto ◽  
Yukiko Kanda ◽  
Tomoki Nagare ◽  
...  

Abstract The phosphatidylinositol 3-kinase signaling pathway in vascular endothelial cells is important for systemic angiogenesis and glucose metabolism. In this study, we addressed the precise role of the 3-phosphoinositide-dependent protein kinase 1 (PDK1)-regulated signaling network in endothelial cells in vivo, using vascular endothelial PDK1 knockout (VEPDK1KO) mice. Surprisingly, VEPDK1KO mice manifested enhanced glucose tolerance and whole-body insulin sensitivity due to suppression of their hepatic glucose production with no change in either peripheral glucose disposal or even impaired vascular endothelial function at 6 months of age. When mice were fed a standard diet at 6 months of age and a high-fat diet at 3 months of age, hypertrophy of epididymal adipose tissues was inhibited, adiponectin mRNA was significantly increased, and mRNA of MCP1, leptin, and TNFα was decreased in the white adipose tissue of VEPDK1KO mice in comparison with controls. Consequently, both the circulating adiponectin levels and the activity of hepatic AMP-activated protein kinase were significantly increased, subsequently enhancing whole-body insulin sensitivity and energy expenditure with increased hepatic fatty acid oxidation in VEPDK1KO mice. These results provide the first in vivo evidence that lowered angiogenesis through the deletion of PDK1 signaling not only interferes with the growth of adipose tissue but also induces increased energy expenditure due to amelioration of the adipocytokine profile. This demonstrates an unexpected role of PDK1 signaling in endothelial cells on the maintenance of proper glucose homeostasis through the regulation of adipocyte development.


2000 ◽  
Vol 14 (7) ◽  
pp. 932-938 ◽  
Author(s):  
X. Yao ◽  
H. Y. Kwan ◽  
F. L. Chan ◽  
N. W. K. Chan ◽  
Y. Huang

2021 ◽  
Vol 22 (6) ◽  
pp. 2804
Author(s):  
Yasuo Yoshitomi ◽  
Takayuki Ikeda ◽  
Hidehito Saito-Takatsuji ◽  
Hideto Yonekura

Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.


Sign in / Sign up

Export Citation Format

Share Document