Energy expenditure for thermoregulation and locomotion in emperor penguins

1976 ◽  
Vol 231 (3) ◽  
pp. 903-912 ◽  
Author(s):  
B Pinshow ◽  
MA Fedak ◽  
DR Battles ◽  
K Schmidt-Nielsen

During the antarctic winter emperor penguins (Aptenodytes forsteri) spend up to four mo fasting while they breed at rookeries 80 km or more from the sea, huddling close together in the cold. This breeding cycle makes exceptional demands on their energy reserves, and we therefore studied their thermoregulation and locomotion. Rates of metabolism were measured in five birds (mean body mass, 23.37 kg) at ambient temperatures ranging from 25 to -47 degrees C. Between 20 and -10 degrees C the metabolic rate (standard metabolic rate (SMR)) remained neraly constant, about 42.9 W. Below -10 degrees C metabolic rate increased lineraly with decreasing ambient temperature and at -47 degrees C it was 70% above the SMR. Mean thermal conductance below -10 degrees C was 1.57 W m-2 degrees C-1. Metabolic rate during treadmill walking increased linearly with increasing speed. Our data suggest that walking 200 km (from the sea to the rookery and back) requires less than 15% of the energy reserves of a breeding male emperor penguin initially weighing 35 kg. The high energy requirement for thermoregulation (about 85%) would, in the absence of huddling, probably exceed the total energy reserves.

2003 ◽  
Vol 51 (6) ◽  
pp. 603 ◽  
Author(s):  
M. P. Ikonomopoulou ◽  
R. W. Rose

We investigated the metabolic rate, thermoneutral zone and thermal conductance of the eastern barred bandicoot in Tasmania. Five adult eastern barred bandicoots (two males, three non-reproductive females) were tested at temperatures of 3, 10, 15, 20, 25, 30, 35 and 40°C. The thermoneutral zone was calculated from oxygen consumption and body temperature, measured during the daytime: their normal resting phase. It was found that the thermoneutral zone lies between 25°C and 30°C, with a minimum metabolic rate of 0.51 mL g–1 h–1 and body temperature of 35.8°C. At cooler ambient temperatures (3–20°C) the body temperature decreased to approximately 34.0°C while the metabolic rate increased from 0.7 to 1.3 mL g–1�h–1. At high temperatures (35°C and 40°C) both body temperature (36.9–38.7°C) and metabolic rate (1.0–1.5 mL g–1 h–1) rose. Thermal conductance was low below an ambient temperature of 30°C but increased significantly at higher temperatures. The low thermal conductance (due, in part, to good insulation, a reduced body temperature at lower ambient temperatures, combined with a relatively high metabolic rate) suggests that this species is well adapted to cooler environments but it could not thermoregulate easily at temperatures above 30°C.


1993 ◽  
Vol 71 (9) ◽  
pp. 1787-1792 ◽  
Author(s):  
L. C. Cuyler ◽  
N. A. Øritsland

Lying and standing metabolic rates were determined for two tame Svalbard reindeer while the animals were in their winter lethargic state during January and February. Mean nonfasting metabolic rates for the 59-kg animals were 1.25 W∙kg−1 for lying and 1.64 W∙kg−1 for standing at rest. So the metabolic rate for standing at rest was about 1.3 times the lying resting metabolic rate (RMR). For Svalbard reindeer the lying RMR was 66–78% of the values for other reindeer/caribou, and was 78–89% of the predicted value. The standing RMR was 44–88% of the values from other reindeer/caribou. Total body thermal conductance was 1.95 ± 0.17 W∙°C−1 for lying and 3.08 ± 0.77 W∙°C−1 for standing at rest. The daily energy expenditure during winter was estimated to be about 9654 kJ∙day−1 or 112 W, and was 1.5 times Kleiber's predicted basal metabolic rate. By remaining lying 45% of the time rather than 35% Svalbard reindeer may conserve the equivalent of about 15 days' energy requirement over the winter. With locomotion at 2% of the winter daily activity budget, the Svalbard reindeer conserve about 21 days' energy expenditure, more than that if locomotion were 8.2% of the budget as in caribou (Boertje 1985). Thus, their low energy expenditures for lying and standing and their sedentary activity budget may be considered energy-saving and survival strategies. It is possible that disturbances, which cause the animals to increase activity, may have a detrimental effect on their overall winter energy balance.


2012 ◽  
Vol 90 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Feng Yue ◽  
Xiao-Long Tang ◽  
De-Jiu Zhang ◽  
Xue-Feng Yan ◽  
Ying Xin ◽  
...  

The body temperature (Tb) and standard metabolic rate (SMR) of female Eremias multiocellata Günther, 1872, a viviparous lizard, were measured at 25, 30, and 35 °C during pregnancy and after parturition to assess energy requirement of reproduction. The results showed that the Tbs of female lizards were slightly higher than actual ambient temperature in the 25 and 30 °C groups, while they were slightly lower than ambient temperature in the 35 °C group. Ambient temperature significantly affected SMR and gestation period of females. Energy requirement was constant in nonpregnant females, whereas it was increased in pregnant females. The maximal estimates of maintenance costs of pregnancy (MCP) were 4.219, 4.220, and 4.448 mg CO2·min–1, which accounted for 19.40%, 14.15%, and 12.32% of the total metabolic rate in the 25, 30, and 35 °C group, respectively. The results indicated the MCP was an important component of total energy cost for the lizard E. multiocellata and the MCP in this lizard incurs a relative fixed energetic cost irrespective of ambient temperature.


2019 ◽  
Author(s):  
Michael Briga ◽  
Simon Verhulst

AbstractCrucial to our understanding of the ageing process is identifying how traits change with age, which variables alter their ageing process and whether these traits associate with lifespan.We here investigated metabolic ageing in zebra finches. We longitudinally monitored 407 individuals during six years and collected 3213 measurements of two independent mass-adjusted metabolic traits: basal metabolic rate (BMRm) at thermoneutral temperatures and standard metabolic rate (SMRm), which is the same as BMRm but at ambient temperatures below thermoneutrality.BMRmdecreased linearly with age, consistent with earlier reports. In contrast, SMRmincreased linearly with age. To the best of our knowledge, this is the first quantification of SMRm ageing, and thereby of the contrast between SMRm and BMRm ageing.Neither metabolic rate nor metabolic ageing rate were associated with individual lifespan. Moreover, experimental manipulations of environmental quality that decreased BMRm and SMRm and shortened lifespan with 6 months (12%) did not affect the ageing of either metabolic trait. Females lived 2 months (4%) shorter than males, but none of the metabolic traits showed sex-specific differences at any age.Our finding that ageing patterns of metabolic rate vary depending on the ambient temperature illustrates the importance of studying ageing in an ecologically realistic setting.Our results add to the mounting evidence that within an organism ageing is an asynchronous process.


1996 ◽  
Vol 44 (2) ◽  
pp. 107 ◽  
Author(s):  
SJ Ambrose ◽  
SD Bradshaw ◽  
PC Withers ◽  
DP Murphy

The mean annual rainfall of Barrow Island, located about 90 km north of Onslow off the arid Western Australian coast, is 324 mm, 74% of which falls as cyclonic rain between February and May. Spinifexbirds captured in May 1992 had a mean body mass of 12.3 +/- 0.3 g and a total body water content (TBW) of 774 +/- 1.6%. In December 1992 the mean body mass was significantly lower (11.7 +/- 0.2 g; P < 0.05), despite a TBW of 73.4 +/- 1.0%. Spinifexbirds maintained water balance in both seasons, but water flux rates were significantly higher in May (P = 0.01). Respective influx and efflux rates in May were 0.70 +/- 0.30 and 0.72 +/- 0.03 mL (g day)(-1) compared with 0.60 +/- 0.04 and 0.57 +/- 0.04 mL (g day)(-1) in December. Field metabolic rates (FMRs), measured with doubly-labelled water ((3)HH(18)0), did not differ significantly between the two periods. The mean FMR in May was 6.8 +/- 0.6 mL CO2 (g h)(-1) compared with 7.2 +/- 0.9 mL CO2 (g h)(-1) in December, similar to rates predicted by Nagy and Peterson (1988) for a similar-sized passerine. The thermoneutral zone (TNZ) of spinifexbirds, determined by metabolic laboratory trials in December, extended from 30 to 39 degrees C. The standard metabolic rate (SMR) within the TNZ was 2.9 +/- 0.1 mL O-2 (g h)(-1), which is up to 20% lower than predicted values. Body temperature was maintained at 39.1 degrees C in the TNZ, but birds became hyperthermic at ambient temperatures (T(a)s) higher than 35 degrees C, with body temperatures reaching 44 degrees C. Wet thermal conductance and evaporative water loss increased markedly at T(a)s > 35 degrees C. The data suggest that spinifexbirds have limited physiological adaptations to desert conditions compared with some other arid-zone birds.


2006 ◽  
Vol 54 (1) ◽  
pp. 9 ◽  
Author(s):  
Alexander N. Larcombe ◽  
Philip C. Withers ◽  
Stewart C. Nicol

Thermoregulatory, metabolic and ventilatory parameters measured for the Tasmanian eastern barred bandicoot (Perameles gunnii) in thermoneutrality (ambient temperature = 30°C) were: body temperature 35.1°C, basal metabolic rate 0.55 mL O2 g–1 h–1, wet thermal conductance 2.2 mL O2 g–1 h–1 °C–1, dry thermal conductance 1.4 J g–1 h–1 °C–1, ventilatory frequency 24.8 breaths min–1, tidal volume 9.9 mL, minute volume of 246 mL min–1, and oxygen extraction efficiency 22.2%. These physiological characteristics are consistent with a cool/wet distribution, e.g. high basal metabolic rate (3.33 mL O2 g–0.75 h–1) for thermogenesis, low thermal conductance (0.92 J g–1 h–1 °C–1 at 10°C) for heat retention and intolerance of high ambient temperatures (≥35°C) with panting, hyperthermia and high total evaporative water loss (16.9 mg H2O g–1 h–1).


2013 ◽  
Vol 13 (59) ◽  
pp. 8128-8138
Author(s):  
HN Ocan ◽  
◽  
JL Kinabo ◽  
PS Mamiro ◽  
CN Nyaruhucha

Measurement of basal metabolic rate (BMR) provides an important baseline for the determination of an individual’s total energy requirement. The study sought to establish human energy expenditure of rural farmers in Magubike village in Tanzania, through determination of BMR, physical activity level (PAL) and total energy expenditure (TEE). In addition, the study intended to provide an indication of the level of energy requirement for the rural people of Tanzania. The objective of the study was to determine energy expenditure of farmers in comparison to the mean caloric intake per capita and the WHO/FAO recommended energy requirements for developing countries. A cross-sectional study design involving 33 male and 31 female farmers was conducted on randomly selected households. Basal Metabolic rate and household activities were measured by indirect calorimetry, using the Douglas bag technique. Physical activity Level was measured by twenty-four hour activity diary and TEE calculated as a product of BMR and PAL. Men’s BMR was 4.7 MJ/day while that of women was 4.3 MJ/day. Farmers mean PAL was 2.20 ± 0.25 in men and 2.05 ± 0.23 in females and TEE was 10.24 MJ/day in men and 8.57 MJ/day in women. Both BMR and TEE were higher in men than in women. The measured energy expenditure for digging and weeding were 1.57 ± 0.3 kJ/min; 1.36 ± 0.31kJ/min in men and 1.58 ± 0.3 kJ/min; 1.49 ± 0.33 kJ/min in women. It was revealed that total energy expenditure of farmers in Magubike village was high with the values being above the mean daily calorie requirement per capita for Tanzania (8.15 MJ/day) but within the WHO/FAO recommended energy requirements (11.26 MJ/day) for developing countries. High energy expenditure was attributed to high energy levels spent in farm activities which were manual and labour intensive. This is likely to be the situation in many rural areas of Tanzania. More work on measurement of costs of farm activities and farmers work capacity are necessary to provide recommendations on energy needs of rural farmers.


1976 ◽  
Vol 231 (3) ◽  
pp. 913-922 ◽  
Author(s):  
Y Le Maho ◽  
P Delclitte ◽  
J Chatonnet

Emperor penguins breed during the cold antarctic winter. The males incubate the single egg while fasting for up to 4 mo and losing some 20 kg of their body mass. Fasting captive birds under outdoor conditions lost from 0.145 to 0.434 kg day -1. Mean resting metabolic rate, 49.06 W for 24.8 kg body mass, is 7 and 27%, respectively, higher than predicted from general metabolic equations for birds. Minimal thermal conductance, 1.31 W m-2 degrees C-1, is within the range for other birds. The lower critical temperature is about -10 degrees C; this can be related to large body size (20-40 kg) and to body shape, giving a smaller relative surface area than for other birds. Rigidity of the feathers explains why winds of moderate speed (up to 5 m s-1) have little effect on heat loss. At very low temperatures the behavior of huddling close together is essential in reducing metabolic rate. Without this behavior, survival during the long fast (up to four mo) at winter temperatures would be impossible.


2005 ◽  
Vol 83 (6) ◽  
pp. 871-879 ◽  
Author(s):  
Craig K.R Willis ◽  
Jeffrey E Lane ◽  
Eric T Liknes ◽  
David L Swanson ◽  
R Mark Brigham

We investigated thermoregulation and energetics in female big brown bats, Eptesicus fuscus (Beauvois, 1796). We exposed bats to a range of ambient temperatures (Ta) and used open-flow respirometry to record their metabolic responses. The bats were typically thermoconforming and almost always entered torpor at Tas below the lower critical temperature Tlc of 26.7 °C. Basal metabolic rate (BMR, 16.98 ± 2.04 mL O2·h–1, mean body mass = 15.0 ± 1.4 g) and torpid metabolic rate (TMR, 0.460 ± 0.207 mL O2·h–1, mean body mass = 14.7 ± 1.3 g) were similar to values reported for other vespertilionid bats of similar size and similar to a value for E. fuscus BMR calculated from data in a previous paper. However, we found that big brown bats had a lower Tlc and lower thermal conductance at low Ta relative to those measured in the previous study. During torpor, the minimum individual body temperature (Tb) that we recorded was 1.1 °C and the bats began defending minimum Tb at Ta of approximately 0 °C. BMR of big brown bats was 76% of that predicted for bats based on the relationship between BMR and body mass. However, the Vespert ilionidae have been under-represented in previous analyses of the relationship between BMR and body mass in bats. Our data, combined with data for other vespertilionids, suggest that the family may be characterized by a lower BMR than that predicted based on data from other groups of bats.


1973 ◽  
Vol 51 (8) ◽  
pp. 841-846 ◽  
Author(s):  
Lawrence C. H. Wang ◽  
Douglas L. Jones ◽  
Robert A. MacArthur ◽  
William A. Fuller

Unlike other lagomorphs or any other mammals living in a cold environment, the basal metabolic rate of the arctic hare, Lepus arcticus monstrabilis (0.36 cm3 O2/g per hour) was only 62–83% of the values predicted from its body weight. The minimum thermal conductance (0.010 cm3 O2/g per hour per degree centigrade) was also reduced to only 51–59% of its weight-specific value (0.019–0.017 cm3 O2/g per hour per degree centigrade). The normal body temperature (38.9C), however, was comparable to that of other lagomorphs. The daily energy consumption between ambient temperatures of −24 and 12.5C was between 262 and 133 kcal, which is 6–43% above the minimum resting values at corresponding ambient temperatures.It is concluded that the reduction of surface area to volume ratio and the effectiveness of its insulation are sufficient compensations so that the arctic hare can maintain a normal body temperature with a depressed basal metabolic rate. Such a reduction of metabolism is energetically adaptive for a species living exclusively in a cold and relatively barren habitat.


Sign in / Sign up

Export Citation Format

Share Document