Salutary effects of androstenediol on cardiac function and splanchnic perfusion after trauma-hemorrhage

2004 ◽  
Vol 287 (2) ◽  
pp. R386-R390 ◽  
Author(s):  
Tomoharu Shimizu ◽  
Mashkoor A. Choudhry ◽  
Laszlo Szalay ◽  
Loring W. Rue ◽  
Kirby I. Bland ◽  
...  

Recent studies have shown that dehydroepiandrosterone (DHEA) administration after trauma-hemorrhage (T-H) improves cardiovascular function and decreases cytokine production in male animals. Although androstenediol, one of the metabolites of DHEA, is reported to have estrogen-like activity, it remains unknown whether androstenediol per se has any salutary effects on cytokines and cardiovascular function after T-H. To examine this effect, male Sprague-Dawley rats underwent laparotomy and were bled to and maintained at a mean arterial blood pressure of 35–40 mmHg for ∼90 min. The animals were resuscitated with four times the volume of maximal bleedout volume in the form of Ringer lactate. Androstenediol (1 mg/kg body wt iv) or vehicle was administered at the end of resuscitation. Twenty-four hours after resuscitation, cardiac function and organ blood flow were measured by using 85Sr-microspheres. Circulating levels of nitrate/nitrite and IL-6 were also determined. Cardiovascular function and organ blood flow were significantly depressed after T-H. However, these parameters were restored by androstenediol treatment. The elevated plasma IL-6 levels after T-H were also lowered by androstenediol treatment. In contrast, plasma levels of nitrate/nitrite were the highest in the androstenediol-treated T-H animals. Because androstenediol administration after T-H decreases cytokine production and improves cardiovascular function, this agent appears to be a novel and useful adjunct for restoring the depressed cardiovascular function and for cytokine production in males after adverse circulatory conditions.

1992 ◽  
Vol 263 (3) ◽  
pp. H945-H950 ◽  
Author(s):  
S. P. Sutera ◽  
K. Chang ◽  
J. Marvel ◽  
J. R. Williamson

These studies were undertaken to investigate the relationship between regional hemodynamic and hemorheological changes in the microvasculature of diabetic rats. Diabetes was induced in male Sprague-Dawley rats by injection of streptozotocin (55 mg/kg body wt). Control rats were injected with vehicle (sodium citrate buffer). A subgroup of diabetic rats was treated with an aldose reductase inhibitor (sorbinil) added to the diet in an amount to provide a daily dose of approximately 0.2 mmol.kg-1.day-1. Three weeks later all animals were anesthetized with thiobutabarbital sodium (Inactin, 100 mg/kg injected intraperitoneally) for assessment of blood flow (by injection of 15 microns microspheres) and regional hematocrit (determined by isotope-dilution techniques using 51Cr-labeled red blood cells and 125I-labeled bovine serum albumin) in selected tissues. The hematocrit in arterial blood samples was identical (approximately 46%) in controls and in diabetics. Regional hematocrits were much lower than arterial hematocrits in control rats and ranged from approximately 20% in ocular tissues, sciatic nerve, diaphragm, and skin to approximately 30% in brain, skeletal muscle, heart, and fat. Hematocrits of diabetic rats were markedly increased in ocular tissues, sciatic nerve, and skin but not in brain, heart, or skeletal muscle. These increases in regional hematocrit were associated with increases in blood flow and were largely prevented by sorbinil. Diabetes induced significant decreases in the mean transit times for whole blood and erythrocytes in all tissues examined except brain, retina, and skin.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (4) ◽  
pp. E608-E612
Author(s):  
M. Michalkiewicz ◽  
J. M. Connors ◽  
L. J. Huffman ◽  
Z. Pietrzyk ◽  
G. A. Hedge

It has been shown that the compensatory growth of the thyroid gland and the compensatory increase in hormone secretion that occur after hemithyroidectomy are preceded by a dramatic increase in thyroid blood flow (BF). These alterations in the thyroid remnant may be due to the concomitant increase in plasma thyrotropin (TSH) concentrations. It has been suggested, however, that the compensatory thyroid growth may also involve a neural reflex. In this study we have investigated the role of TSH in mediating the compensatory alterations in thyroid BF and mass after subtotal thyroidectomy. Male Sprague-Dawley rats were anesthetized with ether for surgical or sham hemithyroidectomy. One-half of the hemithyroidectomized rats (HTX) received no further treatment; in the other one-half of the HTX rats (Clamp), plasma TSH levels were maintained at levels comparable with those in sham-operated animals by initiating constant thyroid hormone replacement beginning at the time of hemithyroidectomy. Plasma samples for TSH, 3,5,3'-triiodothyronine, and thyroxine radioimmunoassays were obtained 2, 7, 14, and 21 days after surgery. Thyroid BF was determined at 1, 2, and 3 wk after surgery by the reference sample version of the radioactive microsphere technique (141Ce, 15 microns diameter). Plasma TSH levels and thyroid lobe weight were significantly elevated in HTX rats but not in Clamp rats. Thyroid BF was markedly increased in HTX rats. Thyroid BF was also significantly increased in Clamp rats despite the suppression of the rise in plasma TSH concentration, but this increase was less than that in HTX rats. Neither hemithyroidectomy nor Clamp treatments had any effect on arterial blood pressure or BF to other tissues (e.g., kidney).(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 85 (6) ◽  
pp. 2360-2364 ◽  
Author(s):  
Xiaohua Jin ◽  
Max Harry Weil ◽  
Shijie Sun ◽  
Wanchun Tang ◽  
Joe Bisera ◽  
...  

Earlier studies demonstrated that not only the stomach but also the esophageal wall served as an appropriate site for estimating the severity of circulatory shock by using tonometric methods. We then conceived of the option of sublingual tonometry. In the present study, we tested the hypothesis that the changes in sublingual [Formula: see text] serve as indicators of decreases in blood flow to sublingual and visceral tissue. In Sprague-Dawley rats, sublingual[Formula: see text] increased from 50 to 127 Torr and arterial blood lactate increased from 0.9 to 11.2 mmol/l during bleeding. Sublingual blood flow simultaneously decreased to ∼32% of preshock values. After reinfusion of shed blood, organ blood flows and sublingual [Formula: see text] were promptly restored to near-baseline values. There were corresponding decreases in blood flows in the tongue, stomach, jejunum, colon, and kidneys during hemorrhagic shock. Increases in sublingual[Formula: see text] were highly correlated with decreases in sublingual blood flow ( r= 0.80), tongue blood flow ( r = 0.81), gastric blood flow ( r = 0.74), jejunal blood flow ( r = 0.65), colon blood flow ( r = 0.80), and renal blood flow ( r = 0.75). Unbled control animals demonstrated no significant changes. Therefore, we anticipate that sublingual tonometry will provide a useful, noninvasive alternative for monitoring visceral [Formula: see text].


1995 ◽  
Vol 78 (6) ◽  
pp. 2025-2032 ◽  
Author(s):  
D. N. Darlington ◽  
R. O. Jones ◽  
L. Marzella ◽  
D. S. Gann

To determine whether fasting alters the response of blood flow to hemorrhage, blood flow was measured by radiolabeled microspheres before and after a 20 ml.kg-1.3 min-1 hemorrhage in fed and fasted chronically cannulated male Sprague-Dawley rats. Restitution of blood volume, as determined by dilution of hematocrit, was attenuated in fasted rats, although the responses of arterial blood pressure, heart rate, cardiac output, and total peripheral resistance were not significantly different. Fasting only affected resting blood flow in the bronchial artery and fat and had no effect on resting vascular resistance in any organ studied. In both fed and fasted rats, hemorrhage led to a significant fall in blood flow to the stomach, small intestine, cecum, colon, spleen, pancreas, kidney, bronchial artery, thymus, and muscle and a rise in blood flow to the adrenals. However, fasting did not significantly alter the response of flow or vascular resistance to these organs. Fasting did alter the blood flow response to hemorrhage in bone, fat, and the hepatic artery. These results demonstrate that 24 h of fasting does not affect the responses of blood flow and vascular resistance to hemorrhage in most organs, even though restitution of blood volume is attenuated.


2000 ◽  
Vol 278 (4) ◽  
pp. F570-F575 ◽  
Author(s):  
Gerd Luippold ◽  
Swetlana Schneider ◽  
Volker Vallon ◽  
Hartmut Osswald ◽  
Bernd Mühlbauer

In the present study we investigated the renal hemodynamic effects of dopamine D3 receptor activation by R(+)-7-hydroxy-dipropylaminotetraline (7-OH-DPAT) in thiopental-anesthetized Sprague-Dawley rats. In clearance experiments infusion of 7-OH-DPAT (0.01–1.0 μg ⋅ kg− 1 ⋅ min− 1) dose-dependently elevated glomerular filtration rate (GFR) without affecting mean arterial blood pressure (MAP). In renal blood flow experiments 7-OH-DPAT infusion (1.0 μg ⋅ kg− 1 ⋅ min− 1) increased GFR by 16 ± 2%, associated with an unexpected fall in renal blood flow by 20 ± 3% and a significant elevation of renal vascular resistance by 18 ± 3%. The renal hemodynamic changes were not influenced by pretreatment with the D2-receptor antagonist S(−)-sulpiride but were completely abolished during D3 receptor inhibition by 5,6-dimethoxy-2-(di-n-propylamino)indane (U-99194A). In micropuncture experiments 7-OH-DPAT (1.0 μg ⋅ kg− 1 ⋅ min− 1) significantly elevated stop-flow pressure measured in the early proximal tubules and reduced hydrostatic pressure at the first branching point of the efferent arteriole without altering MAP. We conclude from these data that pharmacological activation of dopamine D3 receptors affects renal hemodynamics in anesthetized rats by preferential postglomerular vasoconstriction.


1994 ◽  
Vol 77 (3) ◽  
pp. 1288-1293 ◽  
Author(s):  
T. Hirai ◽  
M. D. Visneski ◽  
K. J. Kearns ◽  
R. Zelis ◽  
T. I. Musch

The functional role of nitric oxide (NO) release in regulating blood flow (BF) to exercising skeletal muscle was studied in conscious male Sprague-Dawley rats (603 +/- 28 g; n = 6). In this study, BF was measured using radiolabeled microspheres during treadmill exercise (10% grade, 20 m/min) before and after NO synthase (NOS) inhibition with NG-nitro-L-arginine methyl ester (30 mg/kg ia). After NOS inhibition, mean arterial blood pressure increased from resting baseline values and the duration of vasodilator responses to acetylcholine (ACh) injections (3.0 and 10.0 micrograms/kg ia) was diminished (P < 0.05), demonstrating reduced NOS function. During exercise, BF to the kidneys and organs of the gut was reduced after NOS inhibition. In addition, BF was reduced in 16 of the 28 individual hindquarter muscles or muscle parts. Moreover these reductions in BF were linearly correlated with the estimated sum of the percentage of fast-twitch oxidative glycolytic (FOG) and slow-twitch oxidative (SO) types of fibers found in each muscle [delta BF = -1.1 (%SO + %FOG) + 16.4; r = 0.88, P < 0.001]. These results suggest that NO-mediated vasodilation contributes to the BF responses within and among the muscles of the rat's hindquarters during exercise.


2008 ◽  
Vol 295 (5) ◽  
pp. R1546-R1554 ◽  
Author(s):  
Melissa Li ◽  
Xiaoling Dai ◽  
Stephanie Watts ◽  
David Kreulen ◽  
Gregory Fink

Endothelin (ET) type B receptors (ETBR) are expressed in multiple tissues and perform different functions depending on their location. ETBR mediate endothelium-dependent vasodilation, clearance of circulating ET, and diuretic effects; all of these should produce a fall in arterial blood pressure. However, we recently showed that chronic activation of ETBR in rats with the selective agonist sarafotoxin 6c (S6c) causes sustained hypertension. We have proposed that one mechanism of this effect is constriction of capacitance vessels. The current study was performed to determine whether S6c hypertension is caused by increased generation of reactive oxygen species (ROS) and/or activation of the sympathetic nervous system. The model used was continuous 5-day infusion of S6c into male Sprague-Dawley rats. No changes in superoxide anion levels in arteries and veins were found in hypertensive S6c-treated rats. However, superoxide levels were increased in sympathetic ganglia from S6c-treated rats. In addition, superoxide levels in ganglia increased progressively the longer the animals received S6c. Treatment with the antioxidant tempol impaired S6c-induced hypertension and decreased superoxide levels in ganglia. Acute ganglion blockade lowered blood pressure more in S6c-treated rats than in vehicle-treated rats. Although plasma norepinephrine levels were not increased in S6c hypertension, surgical ablation of the celiac ganglion plexus, which provides most of the sympathetic innervation to the splanchnic organs, significantly attenuated hypertension development. The results suggest that S6c-induced hypertension is partially mediated by sympathoexcitation to the splanchnic organs driven by increased oxidative stress in prevertebral sympathetic ganglia.


1980 ◽  
Vol 58 (5) ◽  
pp. 365-371 ◽  
Author(s):  
A. Berthelot ◽  
A. Gairard

1. Hypertension induced by treatment with deoxycorticosterone acetate and sodium chloride was studied in male Sprague-Dawley rats and related to parathyroid hormone secretion. 2. Lack of parathyroid hormone (due to parathyroidectomy) or decreased parathormone secretion (due to a high-calcium diet) partially inhibited the development of arterial hypertension. 3. In contrast, in thyroparathyroidectomized rats supplemented with thyroxine, the administration of parathyroid hormone rapidly elevated arterial blood pressure. 4. Maintaining a physiological concentration of serum calcium in the absence of parathyroid hormone (by feeding a high-calcium diet to parathyroidectomized rats) was not sufficient to establish mineralocorticoid hypertension. 5. These results show that parathyroid hormone is necessary for the complete development of mineralocorticoid hypertension.


1985 ◽  
Vol 59 (5) ◽  
pp. 1410-1415 ◽  
Author(s):  
K. D. Marcus ◽  
C. M. Tipton

The influence of endurance training on functional capacity [maximal O2 consumption (VO2 max)], caudal arterial blood pressure, and myocardial capillary density were investigated in normotensive rats and rats made hypertensive using the two-kidney one-clip approach (Goldblatt's hypertension). Male Sprague-Dawley rats were assigned to sham (N: 120–140 mmHg), moderately hypertensive (MH = 0.30-mm clips, 150–170 mmHg), or severely hypertensive (SH = 0.25-mm clips, 190–230 mmHg) groups. Rats designated to be runners (T) were exercised on a motor-driven treadmill equal to 50–70% of their VO2 max values for 8–12 wk. Compared with their nontrained (NT) controls, training was associated with significantly higher VO2 max values (12–15%) and muscle cytochrome-c oxidase activities (33–78%). Resting systolic blood pressure was not significantly changed in the N-and MH-T subgroups; however, it was 20–30 mmHg higher in the SH-T subgroup. Mean absolute heart weight for only the N-T group was significantly heavier than their NT controls. However, the mean predicted heart weights (heart wt = 0.639 X body wt of N-NT + 0.001 g) of the two SH groups were significantly higher than expected. The SH-T group had a lower (11%) subepicardial capillary density mean than its NT control and significantly fewer capillaries in the subendocardial region than the other five subgroups. It was concluded that moderate exercise training appeared to be detrimental to rats with severe hypertension because it increased resting blood pressure and decreased myocardial capillary density, even though it improved their functioning capacity.


2006 ◽  
Vol 291 (1) ◽  
pp. F49-F57 ◽  
Author(s):  
Swasti Tiwari ◽  
Randall K. Packer ◽  
Xinqun Hu ◽  
Yoshihisa Sugimura ◽  
Joseph G. Verbalis ◽  
...  

Previously, we demonstrated that rats undergoing vasopressin escape had increased mean arterial blood pressure (MAP), plasma and urine aldosterone, and increased renal protein abundance of the α-subunit of the epithelial sodium channel (ENaC), the thiazide-sensitive Na-Cl cotransporter (NCC), and the 70-kDa band of γ-ENaC (Song J, Hu X, Khan O, Tian Y, Verbalis JG, and Ecelbarger CA. Am J Physiol Renal Physiol 287: F1076–F1083, 2004; Ecelbarger CA, Knepper MA, and Verbalis JG. J Am Soc Nephrol 12: 207–217, 2001). Here, we determine whether changes in these renal proteins and MAP require elevated aldosterone levels. We performed adrenalectomies (ADX) or sham surgeries on male Sprague-Dawley rats. Corticosterone and aldosterone were replaced to clamp these hormone levels. MAP was monitored by radiotelemetry. Rats were infused with 1-deamino-[8-d-arginine]-vasopressin (dDAVP) via osmotic minipumps (5 ng/h). At day 3 of dDAVP infusion, seven rats in each group were offered a liquid diet [water load (WL)] or continued on a solid diet (SD). Plasma aldosterone and corticosterone and urine aldosterone were increased by WL in sham rats. ADX-WL rats escaped, as assessed by early natriuresis followed by diuresis; however, urine volume and natriuresis were somewhat blunted. WL did not reduce the abundance or activity of 11-β-hydroxsteroid dehydrogenase type 2. Furthermore, the previously observed increase in renal aldosterone-sensitive proteins and escape-associated increased MAP persisted in clamped rats. The densitometry of immunoblots for NCC, α- and γ-70 kDa ENaC, respectively, were (% sham-SD): sham-WL, 159, 278, 233; ADX-SD, 69, 212, 171; ADX-WL, 116, 302, 161. However, clamping corticosteroids blunted the rise at least for NCC and γ-ENaC (70 kDa). Overall, the increase in aldosterone observed in vasopressin escape is not necessary for the increased expression of NCC, α- or γ-ENaC or increased MAP associated with “escape.”


Sign in / Sign up

Export Citation Format

Share Document