scholarly journals Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans

2007 ◽  
Vol 292 (1) ◽  
pp. R598-R606 ◽  
Author(s):  
Lee M. Romer ◽  
Hans C. Haverkamp ◽  
Markus Amann ◽  
Andrew T. Lovering ◽  
David F. Pegelow ◽  
...  

We hypothesized that severe hypoxia limits exercise performance via decreased contractility of limb locomotor muscles. Nine male subjects [mean ± SE maximum O2 uptake (V̇o2 max) = 56.5 ± 2.7 ml·kg−1·min−1] cycled at ≥90% V̇o2 max to exhaustion in normoxia [NORM-EXH; inspired O2 fraction (FiO2) = 0.21, arterial O2 saturation (SpO2) = 93 ± 1%] and hypoxia (HYPOX-EXH; FiO2 = 0.13, SpO2 = 76 ± 1%). The subjects also exercised in normoxia for a time equal to that achieved in hypoxia (NORM-CTRL; SpO2 = 96 ± 1%). Quadriceps twitch force, in response to supramaximal single (nonpotentiated and potentiated 1 Hz) and paired magnetic stimuli of the femoral nerve (10–100 Hz), was assessed pre- and at 2.5, 35, and 70 min postexercise. Hypoxia exacerbated exercise-induced peripheral fatigue, as evidenced by a greater decrease in potentiated twitch force in HYPOX-EXH vs. NORM-CTRL (−39 ± 4 vs. −24 ± 3%, P < 0.01). Time to exhaustion was reduced by more than two-thirds in HYPOX-EXH vs. NORM-EXH (4.2 ± 0.5 vs. 13.4 ± 0.8 min, P < 0.01); however, peripheral fatigue was not different in HYPOX-EXH vs. NORM-EXH (−34 ± 4 vs. −39 ± 4%, P > 0.05). Blood lactate concentration and perceptions of limb discomfort were higher throughout HYPOX-EXH vs. NORM-CTRL but were not different at end-exercise in HYPOX-EXH vs. NORM-EXH. We conclude that severe hypoxia exacerbates peripheral fatigue of limb locomotor muscles and that this effect may contribute, in part, to the early termination of exercise.

2007 ◽  
Vol 293 (5) ◽  
pp. R2036-R2045 ◽  
Author(s):  
Markus Amann ◽  
David F. Pegelow ◽  
Anthony J. Jacques ◽  
Jerome A. Dempsey

Our aim was to isolate the independent effects of 1) inspiratory muscle work (Wb) and 2) arterial hypoxemia during heavy-intensity exercise in acute hypoxia on locomotor muscle fatigue. Eight cyclists exercised to exhaustion in hypoxia [inspired O2 fraction (FiO2) = 0.15, arterial hemoglobin saturation (SaO2) = 81 ± 1%; 8.6 ± 0.5 min, 273 ± 6 W; Hypoxia-control (Ctrl)] and at the same work rate and duration in normoxia (SaO2 = 95 ± 1%; Normoxia-Ctrl). These trials were repeated, but with a 35–80% reduction in Wb achieved via proportional assist ventilation (PAV). Quadriceps twitch force was assessed via magnetic femoral nerve stimulation before and 2 min after exercise. The isolated effects of Wb in hypoxia on quadriceps fatigue, independent of reductions in SaO2, were revealed by comparing Hypoxia-Ctrl and Hypoxia-PAV at equal levels of SaO2 ( P = 0.10). Immediately after hypoxic exercise potentiated twitch force of the quadriceps (Qtw,pot) decreased by 30 ± 3% below preexercise baseline, and this reduction was attenuated by about one-third after PAV exercise (21 ± 4%; P = 0.0007). This effect of Wb on quadriceps fatigue occurred at exercise work rates during which, in normoxia, reducing Wb had no significant effect on fatigue. The isolated effects of reduced SaO2 on quadriceps fatigue, independent of changes in Wb, were revealed by comparing Hypoxia-PAV and Normoxia-PAV at equal levels of Wb. Qtw,pot decreased by 15 ± 2% below preexercise baseline after Normoxia-PAV, and this reduction was exacerbated by about one-third after Hypoxia-PAV (−22 ± 3%; P = 0.034). We conclude that both arterial hypoxemia and Wb contribute significantly to the rate of development of locomotor muscle fatigue during exercise in acute hypoxia; this occurs at work rates during which, in normoxia, Wb has no effect on peripheral fatigue.


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


Sports ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 246
Author(s):  
Shaher A. I. Shalfawi ◽  
Eystein Enoksen ◽  
Håvard Myklebust

Objectives: The main purpose of the present study was to investigate the acute effects of myofascial tissue rolling on endurance performance and recovery using a novel designed mechanical self-induced multi-bar roller-massager. Methods: a randomized crossover, repeated measure design was used. Eight national levelled, junior and neo-senior, speed skaters underwent a 10 min myofascial quadriceps rolling pre- and fifteen minutes post- a stepwise incremental cycling-test to exhaustion followed by a Wingate performance-test. The myofascial quadriceps rolling was used in one out of two laboratory testing-days. Time to exhaustion, peak oxygen uptake (VO2peak), blood lactate concentration during 30 min of recovery, and peak- and mean- power during the consecutive Wingate test were recorded. Results: Myofascial quadriceps rolling using roller-massager resulted in higher blood lactate concentration at exhaustion and a larger blood lactate clearance after 10 min to post exhaustion test (both p < 0.05), a tendency for a positive effect on Wingate peak-power (p = 0.084; d = 0.71), whereas no marked differences were observed on VO2peak, time to exhaustion and Wingate mean-power. Conclusion: Despite indications for potential benefits of the quadriceps myofascial tissue release using the mechanical self-induced multi-bar roller-massager on blood lactate concentration and Wingate peak-power, the myofascial tissue release gave no marked performance improvements nor indications of negative effects. Future studies could examine the long-term effects of myofascial tissue release on performance and recovery. Furthermore, integrating a measure of the participants’ subjective experience pre- and post the myofascial tissue release would be of great interest.


2020 ◽  
Vol 45 (8) ◽  
pp. 902-910
Author(s):  
Alessandro L. Colosio ◽  
Massimo Teso ◽  
Silvia Pogliaghi

We tested the hypothesis that static stretching, an acute, nonmetabolic fatiguing intervention, reduces exercise tolerance by increasing muscle activation and affecting muscle bioenergetics during cycling in the “severe” intensity domain. Ten active men (age, 24 ± 2 years; body mass, 74 ± 11 kg; height, 176 ± 8 cm) participated in identical constant-load cycling tests of equal intensity, of which 2 tests were carried out under control conditions and 2 were done after stretching. This resulted in a 5% reduction of maximal isokinetic sprinting power output. We measured (i) oxygen consumption, (ii) electromyography, (iii) deoxyhemoglobin, (iv) blood lactate concentration; (v) time to exhaustion, and (vi) perception of effort. Finally, oxygen consumption and deoxyhemoglobin kinetics were determined. Force reduction following stretching was accompanied by augmented muscle excitation at a given workload (p = 0.025) and a significant reduction in time to exhaustion (p = 0.002). The time to peak oxygen consumption was reduced by stretching (p = 0.034), suggesting an influence of the increased muscle excitation on the oxygen consumption kinetics. Moreover, stretching was associated with a mismatch between O2 delivery and utilization during the isokinetic exercise, increased perception of effort, and blood lactate concentration; these observations are all consistent with an increased contribution of the glycolytic energy system to sustain the same absolute intensity. These results suggest a link between exercise intolerance and the decreased ability to produce force. Novelty We provided the first characterization of the effects of prolonged stretching on the metabolic response during severe cycling. Stretching reduced maximal force and augmented muscle activation, which in turn increased the metabolic response to sustain exercise.


2012 ◽  
Vol 7 (4) ◽  
pp. 375-381 ◽  
Author(s):  
Umberto Emanuele ◽  
Tamara Horn ◽  
Jachen Denoth

Purpose:The main aim of this study was to compare the freely chosen cadence (FCC) and the cadence at which the blood lactate concentration at constant power output is minimized (optimal cadence [Copt]). The second aim was to examine the effect of a concomitant change of road incline and body position on FCC, the maximal external power output (Pmax), and the corresponding Copt.Methods:FCC, Copt, and Pmax were analyzed under 2 conditions: cycling on level ground in a dropped position (LGDP) and cycling uphill in an upright position (UHUP). Seven experienced cyclists participated in this study. They cycled on a treadmill to test the 2 main hypotheses: Experienced cyclists would choose an adequate cadence close to Copt independent of the cycling condition, and FCC and Copt would be lower and Pmax higher for UHUP than with LGDP.Results:Most but not all experienced cyclists chose an adequate cadence close to Copt. Independent of the cycling condition, FCC and Copt were not statistically different. FCC (82.1 ± 11.1 and 89.3 ± 10.6 rpm, respectively) and Copt (81.5 ± 9.8 and 87.7 ± 10.9 rpm, respectively) were significantly lower and Pmax was significantly higher (2.0 ± 2.1%) for UHUP than for LGDP.Conclusion:Most experienced cyclists choose a cadence near Copt to minimize peripheral fatigue at a given power output independent of the cycling condition. Furthermore, it is advantageous to use a lower cadence and a more upright body position during uphill cycling.


2008 ◽  
Vol 33 (6) ◽  
pp. 1105-1111 ◽  
Author(s):  
Craig A. Williams ◽  
Jeanne Dekerle ◽  
Kerry McGawley ◽  
Serge Berthoin ◽  
Helen Carter

The purpose of the study was to identify critical power (CP) in boys and girls and to examine the physiological responses to exercise at and 10% above CP (CP+10%) in a sub-group of boys. Nine boys and 9 girls (mean age 12.3 (0.5) y performed 3 constant-load tests to derive CP. Eight of the boys then exercised, in random order, at CP and CP+10% until volitional exhaustion. CP was 123 (28) and 91 (26) W for boys and girls, respectively (p < 0.02), which was equivalent to 75 (6) and 72 (10) % of peak oxygen uptake, respectively (p > 0.47). Boys’ time to exhaustion at CP was 18 min 37 s (4 min 13 s), which was significantly longer (p < 0.007) than that at CP+10% (9 min 42 s (2 min 31 s)). End-exercise values for blood lactate concentration (B[La]) and maximal oxygen uptake were higher in the CP+10% trial (5.0 (2.4) mmol·L–1 and 2.15 (0.4) L·min–1, respectively) than in the CP trial, (B[La], 4.7 (2.1) mmol·L–1; maximal oxygen uptake, 2.05 (0.35) L·min–1; p > 0.13). Peak oxygen uptake (expressed as a percentage of the peak value) was not attained at the end of the trials (94 (12) and 98 (14) % for CP and CP+10%, respectively). These results provide information about the boundary between the heavy and severe exercise intensity domains in children, and have demonstrated that CP in a group of boys does not represent a sustainable steady-state intensity of exercise.


2002 ◽  
Vol 27 (6) ◽  
pp. 602-611 ◽  
Author(s):  
Jean Michel Leveque ◽  
Jeanick Brisswalter ◽  
Olivier Bernard ◽  
Claude Goubault

The influence of paddling cadence on the time to exhaustion (t.lim) and [Formula: see text] kinetics at the intensity associated with [Formula: see text] [Formula: see text] was examined in seven highly-trained white water kayakers. All subjects were engaged in national or international competitions. Subjects took part in three constant-load tests at [Formula: see text], each test performed at a different paddling cadence (50, 60 or 70 cycles ∙ min−1). The [Formula: see text] kinetics recorded during these constant-load tests at [Formula: see text] were fitted with a mono-exponential equation. A significant increase in t.lim (P <.05) was observed as the paddling cadence increased from 50 to 70 cycles·min−1. No effect was found either on values of [Formula: see text] post-exercise blood lactate concentration, or on the time at which [Formula: see text] was attained [Formula: see text]. Our results suggest that experienced kayakers may choose a high paddling cadence during physiological assessments at [Formula: see text] Further experiments are needed in order to identify the physiological significance of t.lim at [Formula: see text] Key words: performance, exercise test, pulmonary gas exchange, locomotory pattern, kayaking


2016 ◽  
Vol 41 (11) ◽  
pp. 1197-1203 ◽  
Author(s):  
Felipe Mattioni Maturana ◽  
Daniel A. Keir ◽  
Kaitlin M. McLay ◽  
Juan M. Murias

Critical power (CP) conceptually represents the highest power output (PO) at physiological steady-state. In cycling exercise, CP is traditionally derived from the hyperbolic relationship of ∼5 time-to-exhaustion trials (TTE) (CPHYP). Recently, a 3-min all-out test (CP3MIN) has been proposed for estimation of CP as well the maximal lactate steady-state (MLSS). The aim of this study was to compare the POs derived from CPHYP, CP3MIN, and MLSS, and the oxygen uptake and blood lactate concentrations at MLSS. Thirteen healthy young subjects (age, 26 ± 3years; mass, 69.0 ± 9.2 kg; height, 174 ± 10 cm; maximal oxygen uptake, 60.4 ± 5.9 mL·kg−1·min−1) were tested. CPHYP was estimated from 5 TTE. CP3MIN was calculated as the mean PO during the last 30 s of a 3-min all-out test. MLSS was the highest PO during a 30-min ride where the variation in blood lactate concentration was ≤ 1.0 mmol·L−1 during the last 20 min. PO at MLSS (233 ± 41 W; coefficient of variation (CoV), 18%) was lower than CPHYP (253 ± 44 W; CoV, 17%) and CP3MIN (250 ± 51 W; CoV, 20%) (p < 0.05). Limits of agreement (LOA) from Bland–Altman plots between CPHYP and CP3MIN (–39 to 31 W), and CP3MIN and MLSS (–29 to 62 W) were wide, whereas CPHYP and MLSS presented the narrowest LOA (–7 to 48 W). MLSS yielded not only the maximum PO of stable blood lactate concentration, but also stable oxygen uptake. In conclusion, POs associated to CPHYP and CP3MIN were larger than those observed during MLSS rides. Although CPHYP and CP3MIN were not different, the wide LOA between these 2 tests and the discrepancy with PO at MLSS questions the ability of CP measures to determine the maximal physiological steady-state.


2015 ◽  
Vol 16 (2) ◽  
Author(s):  
Benedikt A. Gasser ◽  
Hans H. Hoppeler

AbstractPurpose. Recreational cross-country skiers can benefit from a performance diagnostic when planning a training program. The aim of this study was to establish a simple test protocol to measure endurance capacity and provide training recommendations. Methods. The relationship between endurance performance and cross-country skiing technique was assessed using two tests. First, a lactate threshold test whereby running speed was determined on a treadmill at 4 mmol/l blood lactate concentration. Second, participants completed a variation of the Cooper test using skating technique on flat terrain to determine the distance covered in 12 min and maximum heart rate. Results. There was a correlative (r = 0.18 respectivelly R2 = 0.43) relationship of between the distance covered in the Cooper test and treadmill running speed at 4 mmol/l blood lactate concentration. Conclusions. The two tests allow recreational athletes to rank themselves with regards to their endurance capacity within a population. The relationship between distance covered and maximum heart rate can indicate whether future training should focus on technical or physical improvement.


Sign in / Sign up

Export Citation Format

Share Document