Role of ion transfer processes in acid-base regulation with temperature changes in fish

1984 ◽  
Vol 246 (4) ◽  
pp. R441-R451 ◽  
Author(s):  
N. Heisler

The contributions of transmembrane and transepithelial ion transfer processes and of nonbicarbonate buffering to the in vivo acid-base regulation have been evaluated. Model calculations were performed utilizing experimental data on transepithelial transfer of ions relevant for the acid-base regulation, the intracellular buffering properties of fish tissues, and the behavior of intracellular and extracellular pH and bicarbonate concentration with changes of temperature. The results of these studies indicate that the changes in the pK values of physiological nonbicarbonate buffers with changes in temperature support the adjustment of pH to lower values with rising temperature; however, transmembrane and transepithelial ion transfer mechanisms determine the acid-base regulation of intracellular and extracellular compartments.

2010 ◽  
Vol 298 (4) ◽  
pp. R870-R876 ◽  
Author(s):  
Christopher A. Cooper ◽  
Jonathan M. Whittamore ◽  
Rod W. Wilson

Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish.


1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


2012 ◽  
Vol 303 (7) ◽  
pp. F991-F999 ◽  
Author(s):  
Alexandra Pallini ◽  
Henry N. Hulter ◽  
Jurgen Muser ◽  
Reto Krapf

Endothelin-1 inhibits collecting duct sodium reabsorption and stimulates proximal and distal tubule acidification in experimental animals both directly and indirectly via increased mineralocorticoid activity. Diet-induced acid loads have been shown to increase renal endothelin-1 activity, and it is hypothesized that increased dietary acid-induced endothelin-1 activity may be a causative progression factor in human renal insufficiency and that this might be reversed by provision of dietary alkali. We sought to clarify, in normal human volunteers, the role of endothelin-1 in renal acidification and to determine whether the effect is dependent on dietary sodium chloride. Acid-base equilibrium was studied in seven normal human volunteers with experimentally induced metabolic acidosis [NH4Cl 2.1 mmol·kg body weight (BW)−1·day−1] with and without inhibition of endogenous endothelin-1 activity by the endothelin A/B-receptor antagonist bosentan (125 BID p.o./day) both during dietary NaCl restriction (20 mmol/day) and NaCl repletion (2 mmol NaCl·kg BW−1·day−1). During NaCl restriction, but not in the NaCl replete state, bosentan significantly increased renal net acid excretion in association with stimulation of ammoniagenesis resulting in a significantly increased plasma bicarbonate concentration (19.0 ± 0.8 to 20.1 ± 0.9 mmol/l) despite a decrease in mineralocorticoid activity and an increase in endogenous acid production. In pre-existing human metabolic acidosis, endothelin-1 activity worsens acidosis by decreasing the set-point for renal regulation of plasma bicarbonate concentration, but only when dietary NaCl provision is restricted.


1985 ◽  
Vol 249 (2) ◽  
pp. F205-F212 ◽  
Author(s):  
J. Garcia-Austt ◽  
D. W. Good ◽  
M. B. Burg ◽  
M. A. Knepper

To assess the role of cortical collecting duct bicarbonate secretion in the regulation of net acid excretion, we have sought to identify what factors influence the secretion rate. Net and unidirectional bicarbonate fluxes were measured in isolated perfused cortical collecting ducts from deoxycorticosterone-treated rabbits. The collecting ducts secreted bicarbonate at 11-24 pmol X mm-1 X min-1, confirming the high rate seen in earlier studies. Oral acid loading (50 mM NH4Cl drinking water) completely inhibited the net bicarbonate secretion. The bath-to-lumen flux was markedly reduced with acid loading, but the lumen-to-bath flux changed very little. In tubules from rabbits treated with deoxycorticosterone (but not NH4Cl), luminal chloride replacement with either sulfate or gluconate completely and reversibly inhibited the net bicarbonate secretion. The bath-to-lumen flux was greatly inhibited, but there was little change in the lumen-to-bath flux. We conclude: 1) High rates of bicarbonate secretion can be induced in rabbit cortical collecting ducts by chronic treatment of the animals with deoxycorticosterone. 2) When deoxycorticosterone-treated rabbits were made acidotic by oral administration of NH4Cl, the bicarbonate secretion was prevented, indicating that the systemic acid-base state of the animal may be an important factor regulating bicarbonate secretion. 3) Replacement of chloride in the lumen with sulfate inhibits bicarbonate secretion in the cortical collecting duct, an effect which may explain in part the decrease in urinary pH in response to sulfate infusions in mineralocorticoid-stimulated animals.


2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Ana Velic ◽  
Chahira Benabbas ◽  
Thomas Suply ◽  
Klaus Seuwen

1985 ◽  
Vol 248 (6) ◽  
pp. F796-F803 ◽  
Author(s):  
A. M. Kaufman ◽  
C. Brod-Miller ◽  
T. Kahn

Studies were performed to assess the role of changes in the excretion of citrate, a metabolic precursor of bicarbonate, in acid-base balance in diuretic-induced metabolic alkalosis. Rats on a low-chloride diet with sodium sulfate added were studied during a base-line period, 3 days of furosemide administration, and 4 days post-furosemide. During the period of furosemide administration, net acid excretion and plasma bicarbonate concentration increased. In the post-furosemide period, net acid excretion remained higher than base line but plasma bicarbonate concentration did not increase further. Citrate excretion was significantly higher in the post-furosemide period than in base line. Studies substituting sodium neutral phosphate or sodium bicarbonate for dietary sodium sulfate demonstrated greater increases in net acid excretion post-furosemide and, again, no increase in plasma bicarbonate concentration during this period. Citrate excretion was greater than in the sulfate group. The increment in citrate excretion was proportional to the base “load,” defined with respect to changes in net acid excretion and/or dietary bicarbonate. Thus, in these studies alterations of base excretion in the form of citrate play an important role in acid-base balance during diuretic-induced metabolic alkalosis.


1997 ◽  
Vol 273 (5) ◽  
pp. F698-F705
Author(s):  
R. Unwin ◽  
R. Stidwell ◽  
S. Taylor ◽  
G. Capasso

We have studied the effects of acute respiratory alkalosis (ARALK, hyperventilation) and acidosis (ARA, 8% CO2), chronic respiratory acidosis (CRA; 10% CO2 for 7–10 days), and subsequent recovery from CRA breathing air on loop of Henle (LOH) net bicarbonate flux ([Formula: see text]) by in vivo tubule microperfusion in anesthetized rats. In ARALK blood, pH increased to 7.6, and blood bicarbonate concentration ([[Formula: see text]]) decreased from 29 to 22 mM. Fractional urinary bicarbonate excretion ([Formula: see text]) increased threefold, but LOH[Formula: see text]was unchanged. In ARA, blood pH fell to 7.2, and blood [[Formula: see text]] rose from 28 to 34 mM; [Formula: see text] was reduced to <0.1%, but LOH[Formula: see text]was unaltered. In CRA, blood pH fell to 7.2, and blood [[Formula: see text]] increased to >50 mM, whereas[Formula: see text]decreased to <0.1%.[Formula: see text]was reduced by ∼30%. Bicarbonaturia occurred when CRA rats breathed air, yet LOH[Formula: see text]increased (by 30%) to normal. These results suggest that LOH[Formula: see text]is affected by the blood-to-tubule lumen [[Formula: see text]] gradient and[Formula: see text] backflux. When the usual perfusing solution at 20 nl/min was made[Formula: see text] free, mean[Formula: see text]was −34.5 ± 4.4 pmol/min compared with 210 ± 28.1 pmol/min plus [Formula: see text]. When a low-NaCl perfusate (to minimize net fluid absorption) containing mannitol and acetazolamide (2 × 10−4 M, to abolish H+-dependent[Formula: see text]) was used,[Formula: see text]was −112.8 ± 5.6 pmol/min. Comparable values for[Formula: see text]at 10 nl/min were −35.9 ± 5.8 and −72.5 ± 8.8 pmol/min, respectively. These data indicate significant backflux of[Formula: see text] along the LOH, which depends on the blood-to-lumen [[Formula: see text]] gradient; in addition to any underlying changes in active acid-base transport mechanisms, [Formula: see text]permeability and backflux are important determinants of LOH[Formula: see text]in vivo.


1995 ◽  
Vol 310 (3) ◽  
pp. 745-749 ◽  
Author(s):  
J P Eiserich ◽  
J Butler ◽  
A van der Vliet ◽  
C E Cross ◽  
B Halliwell

By utilizing a pulse-radiolytic technique, we demonstrate for the first time that the rate constant for the reaction of nitric oxide (.NO) with biologically relevant tyrosine and tryptophan radicals (Tyr. and Trp. respectively) in amino acids, peptides and proteins is of the order of (1-2) x 10(9) M-1.s-1. We also show that .NO effectively interferes with electron-transfer processes between tryptophan and tyrosine residues in proteins subjected to pulse radiolysis. The near diffusion-controlled rates of these reactions, coupled with the increasingly recognized role of protein radicals in enzyme catalysis and oxidative damage, suggest that Tyr. and Trp. are likely and important targets for .NO generated in vivo.


1987 ◽  
Vol 6 (3) ◽  
pp. 115-117
Author(s):  
M. J. Pitout ◽  
G. T. Willemse

The regulation of the acid-base balance is generally regarded as a well entrenched area. However, a number of confusing views on pH-homeostasis, especially with reference to the relationship between the kidney and the ammonium buffer system, appear regularly in textbooks. One reason is that the correct stoichiometry of acid-base regulation is not mentioned. Recently the rote of the liver in pH regulation by controlling the bicarbonate concentration through urea synthesis is proposed. In this paper the role of the liver and kidneys as a team is discussed.


Sign in / Sign up

Export Citation Format

Share Document