Opioid growth factor inhibits DNA synthesis in mouse tongue epithelium in a circadian rhythm-dependent manner

1994 ◽  
Vol 267 (3) ◽  
pp. R645-R652 ◽  
Author(s):  
I. S. Zagon ◽  
Y. Wu ◽  
P. J. McLaughlin

In addition to neuromodulation, endogenous opioids also serve as growth factors. To investigate the involvement of the naturally occurring opioid peptide [Met5]enkephalin [termed opioid growth factor (OGF)] in the renewal of epithelium, adult mice were given systemic injections of OGF (1 mg/kg) and examined 2 h later at 0700 or 1700 h. DNA synthesis in the tongue was investigated using [3H]thymidine and autoradiography. OGF depressed DNA synthesis of the basal epithelial cells in the tip, and dorsal and ventral surfaces of the tongue (42-44% of control levels) only at 0700 h. This decrease in DNA synthesis was blocked by concomitant administration of the opioid antagonist naloxone (10 mg/kg); naloxone alone had no influence on cell replicative processes. Both OGF and its receptor, zeta (zeta), were detected in the stratified squamous epithelium of the ventral and dorsal surfaces of the tongue by immunocytochemistry. Photodensitometric measurements of immunocytochemical preparations revealed almost twofold more OGF and zeta-receptor immunoreactivity at 1700 h than at 0700 h. These results indicate that an endogenous opioid peptide and its receptor are present and govern cellular renewal processes in the tongue and regulate DNA synthesis in a circadian rhythm-dependent fashion.

1997 ◽  
Vol 272 (4) ◽  
pp. R1094-R1104
Author(s):  
I. S. Zagon ◽  
Y. Wu ◽  
P. J. McLaughlin

Native opioid peptides serve as growth factors in a number of normal and neoplastic cells and tissues. This study investigated the influence of opioids on circadian rhythm-dependent DNA synthesis in mouse esophagus during homeostatic renewal. In contrast to a labeling index (LI) of 24.0% at 0630 and 5.5% at 1600, disruption of opioid-receptor interaction by the potent opioid antagonist naltrexone hydrochloride (NTX; 10 mg/kg) in mice resulted in an elevation of 49% in DNA synthesis of esophageal epithelial cells at 1600, but had no effect at 0630. Mice subjected to [Met5]enkephalin (1 mg/kg) had an LI that was decreased 23% from control levels at 0630, but was unaffected at 1600. This decrease in DNA synthesis was blocked by concomitant administration of naloxone (10 mg/kg); naloxone alone had no influence on cell replicative processes. In tissue culture studies, NTX and OGF markedly increased and decreased, respectively, the LI from control values. Both opioid growth factor (OGF) and its receptor, zeta, were detected in all but the cornified layer of mouse esophageal epithelium and in the epithelial cells of the stomach and small and large intestines. In addition, both peptide and receptor were observed in the basal and suprabasal cells of human esophageal epithelium. These results indicate that an endogenous opioid peptide (OGF) and its receptor (zeta) reside in gastrointestinal epithelium and play a role in cellular renewal processes in a tonically inhibitory, direct, and circadian rhythm-dependent fashion.


1996 ◽  
Vol 270 (1) ◽  
pp. R22-R32
Author(s):  
I. S. Zagon ◽  
Y. Wu ◽  
P. J. McLaughlin

In addition to neuromodulation, endogenous opioids serve as growth factors in neural and nonneural cells. This study examined the hypothesis that opioids are inhibitory growth factors in vascular development. No circadian rhythm was detected for DNA synthesis in endothelial, smooth muscle, or fibroblast cells in the aorta of 1-day-old rats. Administration of naltrexone (NTX), a potent opioid antagonist, markedly increased the labeling indexes of all three cell types. [Met5]enkephalin, found to be the only opioid peptide to influence DNA synthesis and termed the opioid growth factor (OGF), depressed DNA synthesis in each cell type for 4-6 h in a dose-dependent and receptor-mediated manner. In aortas placed in tissue culture, DNA synthesis was significantly increased by incubation in NTX and decreased by incubation with OGF, Both OGF and its receptor, zeta (zeta), were associated with the cytoplasm of all three cell types in the neonatal aorta. These results indicate that an endogenous opioid peptide (i.e., OGF) and its receptor (i.e., zeta) reside in the developing vascular cells and govern DNA synthesis, with OGF acting directly as a tonic negative regulator of cell generation in the great vessels.


1995 ◽  
Vol 12 (5) ◽  
pp. 939-950 ◽  
Author(s):  
Tomoki Isayama ◽  
W. Jeffrey Hurst ◽  
Patricia J. McLaughlin ◽  
Ian S. Zagon

AbstractThe endogenous opioid peptide [Met5]-enkephalin is a tonically active opioid growth factor (OGF) with an inhibitory action on DNA synthesis in the developing rat retina. In this study, the ontogeny of the spatial and temporal expression of OGF and its binding activity was examined. OGF-like immunoreactivity was detected in the retina at gestation day (E) 20, but not at E18, and was localized to ganglion cell and neuroblast layers; immunochemical reaction was no longer seen in the retina by postnatal day 6. Native OGF was further identified and characterized by high-performance liquid chromatography (HPLC) studies and immunodot assays, which revealed that [Met5]-enkephalin was present in the neonatal, but not adult, rat retina. OGF binding activity was detected as early as E18 using [125I]-[Met5]-enkephalin and in vitro receptor autoradiography. Little OGF binding activity was noted for prenatal retinas, but appreciable activity was observed from birth to postnatal day 4; no OGF binding could be detected after postnatal day 5 or in the adult. These results reveal the transient appearance of the OGF, [Met5]-enkephalin, and its receptor binding activity in the developing mammalian retina, and show that their ontogeny coincides with the timetable of DNA synthesis of retinal neuroblasts.


1995 ◽  
Vol 268 (4) ◽  
pp. R942-R950 ◽  
Author(s):  
I. S. Zagon ◽  
J. W. Sassani ◽  
P. J. McLaughlin

In addition to neuromodulation, endogenous opioid peptides serve as growth factors. To determine involvement of opioids in the homeostatic renewal and repair of the corneal epithelium, epithelial outgrowths from 3-mm explants of rabbit cornea were investigated. Blockade of opioid-receptor interaction by the potent opioid antagonist naltrexone (NTX) for 7 days significantly increased the extent of outgrowths and the number and labeling index (DNA synthesis) of epithelial cells, relative to control levels. Outgrowths exposed to the opioid growth factor (OGF) [Met5]enkephalin for 7 days were subnormal in extent and labeling index and displayed alterations in architectural pattern. The effects of OGF on epithelial outgrowth were blocked by concomitant exposure to the opioid antagonist naloxone; naloxone alone had no effect on growth at the concentration utilized. NTX and OGF were active in both serum-containing and serum-free cultures. Immunocytochemical investigations showed that both OGF and its opioid receptor zeta (zeta) were present in epithelial cells growing in control media. The results indicate that an endogenous opioid peptide and its receptor are present in mammalian corneal epithelium and serve to modulate cell proliferation, migration, and organization.


1989 ◽  
Vol 122 (2) ◽  
pp. 509-517 ◽  
Author(s):  
R. J. E. Horton ◽  
H. Francis ◽  
I. J. Clarke

ABSTRACT The natural opioid ligand, β-endorphin, and the opioid antagonist, naloxone, were administered intracerebroventricularly (i.c.v.) to evaluate effects on LH secretion in ovariectomized ewes and in ovariectomized ewes treated with oestradiol-17β plus progesterone either during the breeding season or the anoestrous season. Ovary-intact ewes were also studied during the follicular phase of the oestrous cycle. Jugular blood samples were taken at 10-min intervals for 8 h and either saline (20–50 μl), 100 μg naloxone or 10 μg β-endorphin were injected i.c.v. after 4 h. In addition, luteal phase ewes were injected i.c.v. with 25 μg β-endorphin(1–27), a purported endogenous opioid antagonist. In ovariectomized ewes, irrespective of season, saline and naloxone did not affect LH secretion, but β-endorphin decreased the plasma LH concentrations, by reducing LH pulse frequency. The effect of β-endorphin was blocked by administering naloxone 30 min beforehand. Treating ovariectomized ewes with oestradiol-17β plus progesterone during the breeding season reduced plasma LH concentrations from 6–8 μg/l to less than 1 μg/l. In these ewes, saline did not alter LH secretion, but naloxone increased LH pulse frequency and the plasma concentrations of LH within 15–20 min. During anoestrus, the combination of oestradiol-17β plus progesterone to ovariectomized ewes reduced the plasma LH concentrations from 3–5 μg/l to undetectable levels, and neither saline nor naloxone affected LH secretion. During the follicular phase of the oestrous cycle, naloxone enhanced LH pulse frequency, which resulted in increased plasma LH concentrations; saline had no effect. In these sheep, β-endorphin decreased LH pulse frequency and the mean concentrations of LH, and this effect was prevented by the previous administration of naloxone. The i.c.v. administration of β-endorphin(1–27) to luteal phase ewes did not affect LH secretion. These data demonstrate the ability of a naturally occurring opioid peptide to inhibit LH secretion in ewes during the breeding and non-breeding seasons, irrespective of the gonadal steroid background. In contrast, whilst the gonadal steroids suppress LH secretion in ovariectomized ewes during both seasons, they only appear to activate endogenous opioid peptide (EOP)-mediated inhibition of LH secretion during the breeding season. Furthermore, these data support the notion that LH secretion in ovariectomized ewes is not normally under the control of EOP, so that naloxone has no effect. Journal of Endocrinology (1989) 122, 509–517


2010 ◽  
Vol 299 (3) ◽  
pp. R774-R785 ◽  
Author(s):  
Fan Cheng ◽  
Patricia J. McLaughlin ◽  
William A. Banks ◽  
Ian S. Zagon

The opioid growth factor (OGF; [Met5]-enkephalin), a constitutively expressed and tonically active inhibitory peptide, interacts with the OGF receptor (OGFr) to form an endogenous growth-regulating pathway in homeostasis. Amplification of OGF-OGFr interfacing in animal and clinical studies depresses development, neoplasia, angiogenesis, and immunity. Disruption of the OGF-OGFr axis accelerates cell proliferation and has been particularly important in wound repair. To investigate how OGF enters cells, OGF was labeled with 5,6-tetramethylrhodamine OGF (RhoOGF) to study its uptake in live cells. African green monkey kidney cells (COS-7) incubated with RhoOGF exhibited a temperature-dependent course of entry, being internalized at 37°C but not at 4°C. RhoOGF was detected in the cytoplasm 15 min after initial exposure, observed in both cytoplasm and nucleus within 30 min, and remained in the cells for as long as 5 h. A 100-fold excess of OGF or the opioid antagonist naltrexone, but not other opioid ligands (some selective for classic opioid receptors), markedly reduced entry of RhoOGF into cells. RhoOGF was functional because DNA synthesis in cells incubated with RhoOGF (10−5 to 10−8 M) was decreased 24–36%, and was comparable to cells treated with unlabeled OGF (reductions of 26–39%). OGF internalization was dependent on clathrin-mediated endocytosis, with addition of clathrin siRNA diminishing the uptake of RhoOGF and upregulating DNA synthesis. RhoOGF clathrin-mediated endocytosis was unrelated to endosomal or Golgi pathways. Taken together, these results suggest that OGF enters cells by active transport in a saturable manner that requires clathrin-mediated endocytosis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 927
Author(s):  
KK DurgaRao Viswanadham ◽  
Roland Böttger ◽  
Lukas Hohenwarter ◽  
Anne Nguyen ◽  
Elham Rouhollahi ◽  
...  

Opioids account for 69,000 overdose deaths per annum worldwide and cause serious side effects. Safer analgesics are urgently needed. The endogenous opioid peptide Leu-Enkephalin (Leu-ENK) is ineffective when introduced peripherally due to poor stability and limited membrane permeability. We developed a focused library of Leu-ENK analogs containing small hydrophobic modifications. N-pivaloyl analog KK-103 showed the highest binding affinity to the delta opioid receptor (68% relative to Leu-ENK) and an extended plasma half-life of 37 h. In the murine hot-plate model, subcutaneous KK-103 showed 10-fold improved anticonception (142%MPE·h) compared to Leu-ENK (14%MPE·h). In the formalin model, KK-103 reduced the licking and biting time to ~50% relative to the vehicle group. KK-103 was shown to act through the opioid receptors in the central nervous system. In contrast to morphine, KK-103 was longer-lasting and did not induce breathing depression, physical dependence, and tolerance, showing potential as a safe and effective analgesic.


Reproduction ◽  
2002 ◽  
pp. 543-552 ◽  
Author(s):  
AJ Douglas ◽  
G Leng ◽  
JA Russell

The role of oxytocin in parturition in mice was investigated. Pup birth profiles, blood samples and brains were collected from parturient mice observed under red light conditions in a reversed light:dark photoperiod. Peripheral administration of an oxytocin antagonist in a dose-dependent manner delayed the birth of subsequent pups, indicating that oxytocin is required for a normal pup birth profile. Oxytocin neurones were activated during birth as shown by both increased immediate early gene ( Fos) expression in oxytocin neurones in the supraoptic nucleus and increased plasma oxytocin concentrations during birth. In addition, the nucleus of the tractus solitarius and the olfactory bulbs, sites that process inputs to oxytocin neurones, become activated during parturition. Exposure to stress during parturition halted subsequent deliveries; at this stage plasma oxytocin concentrations were not higher than those of virgin mice, and birth was restored by administration of oxytocin. Administration of beta-adrenergic antagonist (propranolol) also restored stress-delayed birth, whereas administration of ritrodrine (beta-agonist) delayed birth in non-stressed mice, indicating that adrenergic mechanisms contribute to stress-delayed births in mice. Administration of morphine (mu-opioid agonist) delayed births transiently, but naloxone (opioid antagonist) did not prevent stress-delayed birth, indicating that endogenous opioids do not appear to contribute to neuroendocrine or uterine mechanisms that promote birth in mice. Therefore, despite evidence in oxytocin knockout mice that oxytocin is not essential for parturition in this species, the results of the present study indicate that oxytocin neurone activity and secretion contribute to the birth process in normal mice.


1984 ◽  
Vol 123 (1) ◽  
pp. 148-155 ◽  
Author(s):  
Mitsuaki Suda ◽  
Kazuwa Nakao ◽  
Makoto Sakamoto ◽  
Takaaki Yoshimasa ◽  
Narito Morii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document