Targets for SMR1-pentapeptide suggest a link between the circulating peptide and mineral transport

1997 ◽  
Vol 273 (4) ◽  
pp. R1309-R1320 ◽  
Author(s):  
C. Rougeot ◽  
R. Vienet ◽  
A. Cardona ◽  
L. Le Doledec ◽  
J. M. Grognet ◽  
...  

The submandibular rat 1 protein (SMR1) is selectively processed at pairs of basic amino acid residues in a tissue- and sex-specific manner. We have mapped peripheral targets for the final secretory maturation product of SMR1, the pentapeptide QHNPR, by examining in vivo the tissue distribution of the radiolabeled peptide using β-radio imager whole body autoradiography. The characteristics of tissue uptake allowed specific binding sites at physiological peptide concentrations to be identified within the renal outer medulla, bone and dental tissue, glandular gastric mucosa, and pancreatic lobules. Direct evidence that pentapeptide binding sites are localized in selective portions of the male rat nephron, within the S3, S2, and S1 segments of the proximal tubules, was obtained. In bone tissue the pentapeptide exclusively accumulates within the trabecular bone remodeling unit, and in dental tissue it concentrates within the tubules of the dentinal rat incisor. In relation to male rat-specific behavioral characteristics, our data suggest that the circulating androgen-regulated SMR1-derived pentapeptide is primarily involved in the modulation of mineral balance between at least four systems: kidney, bone, tooth, and circulation.

1989 ◽  
Vol 256 (2) ◽  
pp. G436-G441 ◽  
Author(s):  
C. Bianchi ◽  
G. Thibault ◽  
A. De Lean ◽  
J. Genest ◽  
M. Cantin

We have studied the localization and the characterization of atrial natriuretic factor (ANF) binding sites by radioautographic techniques. Quantitative in vitro radioautography with a computerized microdensitometer demonstrated the presence of high-affinity, low-capacity 125I-ANF-(99-126) binding sites (Kd, 48 pM; Bmax, 63 fmol/mg protein) mainly in the villi of 20-microns slide-mounted transverse sections of the rat jejunum. Competition curves showed 50% inhibitory concentrations of 55 and 1,560 pM for ANF-(99-126) and ANF-(103-123), respectively. In vivo electron microscope radioautography showed that 80% of the silver grains were localized on the lamina propria fibroblast-like cells, 18% on mature enterocytes, and 2% on capillaries. Bradykinin and adrenocorticotropin did not compete with ANF binding. These results demonstrate that ANF binding sites in the rat jejunum possess the pharmacological characteristics of functional ANF receptors encountered in other rat tissues, and ultrastructural radioautographs show their cellular distribution. Taken together, these results demonstrate the presence and the localization of specific binding sites for ANF in the jejunal villi of the rat small intestine.


2020 ◽  
Vol 48 (16) ◽  
pp. 8914-8926
Author(s):  
Erin E Cutts ◽  
J Barry Egan ◽  
Ian B Dodd ◽  
Keith E Shearwin

Abstract The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


2017 ◽  
Author(s):  
R. Murugan

AbstractWe show that nucleosomes can efficiently control the relative search times spent by transcription factors (TFs) on one- (1D) and three-dimensional (3D) diffusion routes towards locating their cognate sites on DNA. Our theoretical results suggest that the roadblock effects of nucleosomes are dependent on the relative position on DNA with respect to TFs and their cognate sites. Especially, nucleosomes exert maximum amount of hindrance to the 1D diffusion dynamics of TFs when they are positioned in between TFs and their cognate sites. The effective 1D diffusion coefficient (χTF) associated with the dynamics of TFs in the presence of nucleosome decreases with the free energy barrier (µ) associated the sliding dynamics of nucleosomes as . Subsequently the mean first passage time (ηL) that is required by TFs to scan L number of binding sites on DNA via 1D diffusion increases with μ as . When TFs move close to nucleosomes then they exhibit a typical sub-diffusive dynamics. Nucleosomes can enhance the search dynamics of TFs when TFs present in between nucleosomes and transcription factor binding sites (TFBS). The level of enhancement effects of nucleosomes seems to be much lesser than the level of retardation effects when nucleosomes present in between TFs and their cognate sites. These results suggest that nucleosome depleted regions around the cognate sites of TFs is mandatory for an efficient site-specific interactions of TFs with DNA. Remarkably the genome wide positioning pattern of TFs shows maximum at their specific binding sites and the positioning pattern of nucleosome shows minimum at the specific binding sites of TFs under in vivo conditions. This seems to be a consequence of increasing level of breathing dynamics of nucleosome cores and decreasing levels of fluctuations in the DNA binding domains of TFs as they move across TFBS. Since the extent of breathing dynamics of nucleosomes and fluctuations in the DBDs of TFs are directly linked with their respective 1D diffusion coefficients, the dynamics of TFs becomes slow as they approach their cognate sites so that TFs form tight site-specific complex. Whereas the dynamics of nucleosomes becomes rapid so that they pass through the cognate sites of TFs. Several in vivo datasets on genome wide positioning pattern of nucleosomes as well as TFs seem to agree well with our arguments. We further show that the condensed conformational state of DNA can significantly decrease the retarding effects of nucleosome roadblocks. The retarding effects of nucleosomes on the 1D diffusion dynamics of TFs can be nullified when the degree of condensation of the genomic DNA is such that it can permit a jump size associated with the dynamics of TFs beyond k > 150 bps.


1984 ◽  
Vol 219 (3) ◽  
pp. 1001-1007 ◽  
Author(s):  
Y A Lefebvre ◽  
J T Venkatraman

Nuclear envelopes and nuclear matrices were isolated from the male-rat liver. Incubation of 125I-labelled 3,3′,5-tri-iodothyronine (T3) with the nuclear-envelope fraction resulted in specific binding of T3 to the membranes. Maximum specific binding occurred at 30 degrees C after 2h incubation. Storage for 1 week at -80 degrees C resulted in no loss of binding. Scatchard analysis revealed a class of binding sites with KD 86 nM. 3,3′,5′-Tri-iodothyronine was as effective a competitor of [125I]T3 binding to nuclear envelopes as was L-T3 itself, and tri-iodothyroacetic acid was 70% as potent as T3. L- and D-thyronine did not compete for [125I]T3 binding. Incubation of nuclear envelopes with 0.6 M-NaCl before addition of T3 resulted in the complete loss of specific binding sites, whereas exposure of the membranes to 2.0 M-NaCl after incubation with T3 did not extract binding sites. Nuclear matrices, after incubation with [125I]T3 under the same conditions, were shown to possess a class of binding sites with a similar KD but with approx. 30% of the maximum binding capacity. Nuclear envelopes from hypothyroid animals may possess slightly lower numbers of binding sites compared with nuclear envelopes from the intact animal, whereas nuclear matrices from hypothyroid animals have the same number of binding sites as do nuclear envelopes from the intact animal. In conclusion, nuclear envelopes and nuclear matrices have a class of binding sites with relatively high affinity for T3. It is distinct from nuclear and cytosolic binding sites.


1980 ◽  
Vol 85 (3) ◽  
pp. 682-694 ◽  
Author(s):  
H Warshawsky ◽  
D Goltzman ◽  
M F Rouleau ◽  
J J Bergeron

An in vivo binding assay using radioautography was employed to visualize calcitonin receptors in rat tissues. At 2 min after intravenous injection of biologically active 125I-salmon calcitonin, free hormone was separated from bound hormone by intracardiac perfusion with lactated Ringer's followed by fixation with 2.5% glutaraldehyde. Various tissues were removed and processed for light and electron microscope radioautography. These were compared to tissues removed from animals that received identical amounts of labeled hormone with a large excess of unlabeled calcitonin. Among the tissues investigated, kidney and bone demonstrated labeling. In kidney, most silver grains were located over vesicles below the brush border of cells of theproximal convoluted tubules. These grains were still present after simultaneous injection of excess unlabeled hormone and most likely represented binding to sites involved with ingestion and degradation of hormone from the urinary filtrate. In contrast, grains localized to the basal surfaces of distal convoluted tubule cells were significantly reduced in number in control animals and represented sites of saturable, specific hormone binding. In bone, specific binding sites were found only at the periphery of osteoclasts. These labeled cells were located at resorption sites examined in tibia, humerus, and alveolar bone. This demonstration of the localization of 124I-calcitonin in situ provides a new approach for study the interaction of calcium-regulating hormones with their target cells.


1995 ◽  
Vol 41 (2) ◽  
pp. 28-30
Author(s):  
T. S. Saatov ◽  
F. Ya. Gulyamova ◽  
G. U. Usmanova

Besides intracellular receptors of thyroid hormones, specific binding sites for T3 and T4 were detected on plasma membranes (PM) of some cells and a relationship between membrane reception .and lipid composition of membranes shown. The parameters of 125I-T4 binding to highly purified PM of hepatic and cerebral cells of rats were studied. The hepatic and cerebral cellular membranes were found to contain two sites of hormone binding each, one of these sites being characterized by a high affinity and low capacity, and the other by low affinity and a higher binding capacity. The association constant of highly affine site of hepatocyte membranes was found to be higher than that of brain cell membranes. T4 membranous receptors may be significant in the process of cell “recognition" by the hormone. In vivo and in vitro experiments with 125I-T4 and 14C-labeled thyroxin in ganglioside fractions showed appreciable binding of the hormone to Gm3 fraction, this evidently pointing to participation of this, ganglioside in T4 interaction with membrane receptor. It is possible that gangliosides situated on membranous surface are components of or function as receptors.


1977 ◽  
Vol 130 (1) ◽  
pp. 176-183 ◽  
Author(s):  
Volker Höllt ◽  
Andrzej Członkowski ◽  
Albert Herz

2019 ◽  
Author(s):  
Erin Cutts ◽  
J. Barry Egan ◽  
Ian Dodd ◽  
Keith Shearwin

AbstractThe Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA, and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl’s repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


1983 ◽  
Vol 244 (3) ◽  
pp. F325-F334 ◽  
Author(s):  
N. Farman ◽  
A. Vandewalle ◽  
J. P. Bonvalet

Specific binding sites of tritiated dexamethasone ([3H]dex) along the tubule of rabbit kidney were investigated using an autoradiographic method (dry film) on isolated tubular segments. After in vitro incubation of kidney pyramids with [3H]dex (0.15-53 nM) in the presence or absence of an excess (X200) of unlabeled dexamethasone, tubular segments were microdissected and processed for autoradiography. A quantitative analysis of specific labeling over cytoplasm and nuclei was performed. Specific nuclear binding was observed in all tubular segments beyond the pars recta. This binding was dose dependent and reached much higher values than those reported for aldosterone. In the proximal tubule, the specific labeling was also high but remained mostly cytoplasmic. The meaning of these drastically different intracellular localizations is still open to interpretation. Autoradiography was performed after in vivo injection of [3H]dex and [3H]aldosterone. The results were not different from those described here for dexamethasone and from those previously reported for aldosterone after in vitro incubation. We conclude that specific nuclear binding sites for dexamethasone range over the nephron except for proximal tubule, with no great difference among segments, in contrast to specific sites for aldosterone, which are restricted to distal and cortical collecting tubules. The exact significance of the proximal cytoplasmic specific binding of [3H]dex remains to be determined.


1978 ◽  
Vol 133 (3) ◽  
pp. 249-260 ◽  
Author(s):  
Claus Bræstrup ◽  
Richard F. Squires

SummaryBrain membranes from rat and human contain a single class of brain specific binding sites for pharmacologically and clinically active benzodiazepines. There is good correlation between the pharmacological effects of benzodiazepines and the affinity for the 3H-diazepam binding site.Benzodiazepine binding sites are not present on glial cells. Selective neuronal degeneration experiments in rats indicate a neuronal localization. 3H-Flunitrazepam is a very suitable ligand for affinity binding and it binds to the same class of binding sites as 3H-diazepam.Our results indicate that the in vitro3H-diazepam and 3H-flunitrazepam binding sites are the receptors which in vivo mediate various pharmacological and clinical effects of benzodiazepines.


Sign in / Sign up

Export Citation Format

Share Document