scholarly journals Neonatal rabbit proximal tubule basolateral membrane Na+/H+antiporter and Cl−/base exchange

1999 ◽  
Vol 276 (6) ◽  
pp. R1792-R1797 ◽  
Author(s):  
Mehul Shah ◽  
Raymond Quigley ◽  
Michel Baum

The present in vitro microperfusion study examined the maturation of Na+/H+antiporter and Cl−/base exchanger on the basolateral membrane of rabbit superficial proximal straight tubules (PST). Intracellular pH (pHi) was measured with the pH-sensitive fluorescent dye 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in neonatal and adult superficial PST. Na+/H+antiporter activity was examined after basolateral Na+ addition in tubules initially perfused and bathed without Na+. Neonatal Na+/H+antiporter activity was ∼40% that of adult segment (9.7 ± 1.5 vs. 23.7 ± 3.2 pmol ⋅ mm−1 ⋅ min−1; P < 0.001). The effect of bath Cl− removal on pHi was used to assess the rates of basolateral Cl−/base exchange. In both neonatal and adult PST, the Cl−/base exchange activity was significantly higher in the presence of 25 mM[Formula: see text] than in the absence of[Formula: see text] and was inhibited by cyanide and acetazolamide, consistent with Cl−/[Formula: see text]exchange. The proton flux rates in the presence of bicarbonate in neonatal and adult tubules were 14.1 ± 3.6 and 19.5 ± 3.5 pmol ⋅ mm−1min−1, respectively ( P = NS), consistent with a mature rate of Cl−/[Formula: see text]exchanger activity in neonatal tubules. Basolateral Cl−/base exchange activity in the absence of CO2 and[Formula: see text], with luminal and bath cyanide and acetazolamide, was greater in adult than in neonatal PST and inhibited by bath DIDS consistent with a maturational increase in Cl−/OH−exchange. We have previously shown that the rates of the apical membrane Na+/H+antiporter and Cl−/base exchanger were approximately fivefold lower in neonatal compared with adult rabbit superficial PST. These data demonstrate that neonatal PST basolateral membrane Na+/H+antiporter and Cl−/base exchanger activities are relatively more mature than the Na+/H+antiporter and Cl−/base exchangers on the apical membrane.

1988 ◽  
Vol 254 (5) ◽  
pp. F677-F683 ◽  
Author(s):  
M. Baum

The present in vitro microperfusion study examined whether apical membrane chloride transport is mediated by chloride-base exchange in the rabbit proximal convoluted (PCT) and proximal straight tubule (PST) by examining the effect of the addition of luminal chloride on intracellular pH. Intracellular pH was measured fluorometrically using the pH-sensitive dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. In PCT initially perfused without chloride, changing the luminal perfusate to a high chloride (148 mM)-low bicarbonate (5 mM) solution simulating late proximal tubular fluid produced a cell acidification (7.56 +/- 0.06 to 7.52 +/- 0.06, P less than 0.02) when 1 mM formate was present in the perfusate and bathing solution. This acidification was inhibited by 0.5 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. This chloride-base exchange was not observed in the absence of formate, and neither acetate nor lactate produced the cell acidification observed with formate. Because the Na+-H+ antiporter could blunt a pH change, 2 mM amiloride was added to the luminal perfusate. While addition of luminal chloride produced a small cell acidification in the absence of formate (7.63 +/- 0.06 to 7.60 +/- 0.05, P less than 0.05), a much greater cell acidification was observed in the presence of 1 mM formate (7.69 +/- 0.05 to 7.58 +/- 0.06, P less than 0.01). Chloride-base exchange was only detected in the presence of formate in the PST. These studies demonstrate apical membrane chloride-base exchange in the presence of formate in the rabbit proximal tubule consistent with chloride-formate exchange.


1998 ◽  
Vol 274 (5) ◽  
pp. F883-F888 ◽  
Author(s):  
Mehul Shah ◽  
Raymond Quigley ◽  
Michel Baum

The present in vitro microperfusion study compared the mechanism and rates of NaCl transport in neonatal and adult rabbit proximal straight tubules. In proximal straight tubules perfused with a late proximal tubular fluid and bathed in a serumlike albumin solution, the rate of volume absorption ( J V) was 0.54 ± 0.10 and 0.12 ± 0.05 nl ⋅ mm−1 ⋅ min−1in adults and neonates, respectively ( P < 0.05). With the addition of 10−5 M bath ouabain, J Vdecreased to 0.27 ± 0.07 and −0.03 ± 0.04 nl ⋅ mm−1 ⋅ min−1in adult and neonatal tubules, respectively ( P < 0.05), consistent with lower rates of active and passive NaCl transport in the neonatal proximal straight tubule. The effect of luminal sodium and chloride removal on intracellular pH was used to assess the relative rates of Na+/H+and Cl−/base exchange. The rates of Na+/H+and Cl−/base exchange were approximately fivefold less in neonatal proximal straight tubules than adult tubules. In both neonatal and adult proximal straight tubules, the rate of Cl−/base exchange was not affected by formate, bicarbonate, or cyanide and acetazolamide, consistent with Cl−/OH−exchange. These data demonstrate an increase in proximal straight tubule NaCl transport during postnatal renal development.


1990 ◽  
Vol 259 (3) ◽  
pp. F458-F465
Author(s):  
M. Baum

The present study examined acidification mechanisms on the basolateral membrane of the early renal vesicle, an undifferentiated ball of cells that will develop into parts of the glomerulus, proximal tubule, loop of Henle, and a portion of the distal convoluted tubule. Renal vesicles were dissected from newborn rabbit kidneys and bathed in vitro. To examine the basolateral membrane acidification mechanisms, intracellular pH (pHi) was measured by use of the pH-sensitive dye (2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. Evidence for Cl(-)-base exchange included the fact that removal of bath Cl-resulted in cell alkalinization (7.35 +/- 0.03 to 7.48 +/- 0.05; P less than 0.01). Cell alkalinization induced by Cl- removal was also observed in presence of a voltage clamp without bath Na+ (7.18 +/- 0.02 to 7.39 +/- 0.04; P less than 0.01) and was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). pHi recovery after acute alkalinization resulting from CO2 removal was 0.20 +/- 0.03 pH units/min in the presence of Cl-, 0.07 +/- 0.01 in experiments with 0.2 mM DIDS, and 0.07 +/- 0.01 in absence of bath Cl-. The early renal vesicle also has a basolateral Na(+)-H+ antiporter. Removal of bath Na+ resulted in cell acidification (7.36 +/- 0.09 to 7.18 +/- 0.06; P less than 0.01), which was inhibited by 2 mM amiloride. Cell pH recovery after acute acidification (NH4Cl prepulse technique) was entirely dependent on bath Na+ and inhibited by amiloride. Thus the renal vesicle has basolateral membrane Na(+)-H+ and Cl(-)-base exchangers that can defend against cell acidification and alkalinization, respectively.


1990 ◽  
Vol 258 (5) ◽  
pp. G815-G824 ◽  
Author(s):  
A. Yanaka ◽  
K. J. Carter ◽  
H. H. Lee ◽  
W. Silen

The effect of Cl- on intracellular pH (pH(i)) was studied using sheets of frog (Rana catesbeiana) fundic mucosa in which oxynticopeptic cells were selectively loaded with the acetomethoxy ester form of the pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF/AM). Before the measurement of pH(i), tissues were exposed to either 10(-5) M forskolin in the serosal solution (stimulated tissues) or 3 x 10(-4) omeprazole in the serosal solution (inhibited tissues). In HCO3- and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffers, pH(i) increased significantly after removal of Cl- from serosal and luminal solution, both in stimulated and inhibited tissues. The presence of Cl- in the luminal solution prevented this rise in pHi, an effect abolished by serosal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 3 x 10(-4) M) but not by serosal amiloride (10(-3)M). In the presence of serosal Cl-, pH(i) increased after exposure to serosal DIDS, more prominently in the stimulated than in the inhibited tissues. These results confirm the presence of a Cl(-)-HCO3-exchanger in the basolateral membrane of oxynticopeptic cells in intact sheets of mucosa and suggest that luminal Cl- contributes to the regulation of pH(i) in oxynticopeptic cells.


Physiology ◽  
1989 ◽  
Vol 4 (1) ◽  
pp. 18-22
Author(s):  
S Sasaki ◽  
F Marumo

In mammalian renal proximal tubule, a significant fraction of Cl- reabsorption passes through the cell by electroneutral mechanisms. At the apical membrane, Cl- is taken up into the cell by a Cl--base exchange, and it appears to exit the basolateral membrane through K+-Cl- cotransport and Na+-HCO3--Cl- exchange.


1989 ◽  
Vol 256 (2) ◽  
pp. F335-F341
Author(s):  
M. Baum

The present in vitro microperfusion study examined whether the rates of the apical membrane Na+-H+ antiporter and basolateral membrane Na(HCO3)3 symporter vary along the length of the proximal tubule. Initial proximal convoluted tubules (PCT obtained within 0.5 mm from the glomerulus), mid-PCT (PCT without glomerular attachments) and cortical proximal straight tubules were examined. The rate of either the apical or basolateral membrane acidification mechanism was measured from the initial rate of change of intracellular pH after a change in either the luminal or bathing solution. Intracellular pH was measured fluorometrically using the pH-sensitive dye (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. The rate of bicarbonate exit across the basolateral membrane was examined by imposing either a sodium or bicarbonate gradient. There was no difference between initial and mid-PCT, but the rate of change in cell pH was 30% slower in PST in both series. The rate of sodium-dependent apical proton secretion was examined by changing the sodium concentration in the lumen. There was no difference in sodium-dependent apical proton secretion in initial vs. mid-PCT, but the rate fell by 70% in the proximal straight tubule (PST). These differences were not due to a difference in buffer capacity in these segments. These data are consistent with a homogeneous rate of apical Na+-H+ antiporter and basolateral Na(HCO3)3 activity along the rabbit PCT, but a lower rate in the PST.


1996 ◽  
Vol 270 (4) ◽  
pp. F691-F699 ◽  
Author(s):  
D. W. Good ◽  
B. A. Watts

The medullary thick ascending limb (MTAL) of the rat actively absorbs both HCO3- and ammonium. The roles of apical membranes Na+/H+ exchange in these processes and in determining steady-state intracellular pH (pHi) were examined in MTAL perfused in vitro with solutions containing 146 mM Na+ and 25 mM HCO3- (pH 7.4). Addition of 1 mM amiloride or 50 microM ethylisopropylamiloride (EIPA) to the lumen decreased HCO3- absorption (JHCO3) from 10.6 +/- 0.5 to 2.3 +/- 0.3 pmol.min-1.mm-1 (P < 0.001) and pHi from 7.10 +/- 0.02 to 6.86 +/- 0.03 (P < 0.001). The combination of lumen Na+ replacement plus amiloride abolished JHCO3. Chronic metabolic acidosis (CMA) caused a 32% increase in JHCO3 that was inhibited by luminal amiloride. Addition of 4 mM NH4Cl to perfusate and bath markedly decreased pHi (from 7.10 to 6.70) but did not stimulate luminal H+ secretion as assessed by HCO3- absorption. With 4 mM NH4Cl in perfusate and bath, luminal addition of amiloride decreased pHi from 6.70 +/- 0.06 to 6.50 +/- 0.05 (P < 0.005) but had no effect on net ammonium absorption. These results demonstrate that 1) apical membrane Na+/H+ exchange mediates virtually all of HCO3- absorption and is an important determinant of steady-state pHi in the MTAL; 2) the adaptive increase in HCO3- absorption in CMA is mediated by an increase in apical membrane Na+/H+ exchange; 3) ammonium markedly acidifies the cells but does not stimulate luminal acidification, suggesting that pHi is not a predominant influence on apical Na+/H+ exchange activity and that H+ generated in the cells as the result of transcellular ammonium absorption is extruded across the basolateral membrane; and 4) apical membrane Na+/H+ exchange is not important for ammonium absorption.


1992 ◽  
Vol 262 (1) ◽  
pp. F47-F54 ◽  
Author(s):  
P. A. Preisig

In vivo microperfusion was used to examine the mechanism of luminal flow rate dependence of proximal tubule acidification. Luminal flow rate was acutely changed between 5 and 40 nl/min, while luminal and peritubular capillary composition were held constant. With inhibition of basolateral membrane base transport by peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), cell pH (pHi) provides a sensitive index of apical membrane H secretory activity. At a luminal perfusate [HCO3] of 25 mM, progressive increases in luminal flow rate (5----15----25----40 nl/min) caused progressive increases in pHi. This effect was of a smaller magnitude with a luminal perfusate [HCO3] of 60 mM and was further decreased at a luminal perfusate [HCO3] of 100 mM. This pattern of diminished flow rate dependence at higher luminal [HCO3] is consistent with the presence of a luminal unstirred layer, whose composition can be modified by luminal flow rate. The activity of the apical membrane Na-H antiporter, assayed as the initial rate of pHi recovery from an acid load in the presence of peritubular DIDS, was faster at 40 compared with 5 nl/min. Basolateral membrane Na-3HCO3 symporter activity, assayed as the initial rate of pHi recovery from an alkali load in the absence of luminal and peritubular chloride, was faster at 40 compared with 5 nl/min. This effect was eliminated by luminal amiloride, suggesting an indirect effect of flow mediated by changes in pHi secondary to flow rate-dependent changes in apical membrane Na-H antiporter activity. In summary, increases in luminal flow rate directly increase apical membrane H secretion, possibly by modification of a luminal unstirred layer.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 285 (3) ◽  
pp. C608-C617 ◽  
Author(s):  
Snezana Petrovic ◽  
Liyun Ma ◽  
Zhaohui Wang ◽  
Manoocher Soleimani

SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates [Formula: see text] exchange in in vitro expression systems. We hypothesized that PAT1 along with a [Formula: see text] exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical [Formula: see text] exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit [Formula: see text] cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl– was ∼5.0-fold higher in the presence than in the absence of [Formula: see text]. The Cl–-dependent base transport was inhibited by ∼61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 μM) did not affect the [Formula: see text] exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and [Formula: see text] exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical [Formula: see text] (and Cl–/OH–) exchanger activities in kidney proximal tubule.


1985 ◽  
Vol 248 (2) ◽  
pp. F282-F295 ◽  
Author(s):  
K. W. Beyenbach ◽  
E. Fromter

The electrophysiology of shark proximal tubules (Squalus acanthias) was investigated using conventional microelectrodes and cable analysis. Under in vitro perfusion with symmetrical Ringer solutions, tubule transepithelial resistance was 36.3 +/- 2.3 omega X cm2 (means +/- SE, n = 44). Other electrophysiological variables varied widely under control conditions. In unstimulated tubules (n = 16) the transepithelial voltage (VT,o) was lumen positive (1.2 +/- 0.2 mV), the basolateral membrane potential (Vbl,x) was -61.3 +/- 1.6 mV, and the fractional resistance of the apical membrane (fRa) was 0.67 +/- 0.02. Spontaneously stimulated tubules (n = 28) had lumen-negative VT,o values (-1.5 +/- 0.4 mV), low Vbl,x values (-41.3 +/- 1.7 mV), and low fRa values (0.30 +/- 0.02). The stimulated state can be induced in unstimulated tubules via treatment with cAMP. Multiple microelectrode impalements in a single tubule revealed epithelial cells sharing similar electrophysiological properties. Selective ion substitutions in the tubule lumen and peritubular bath uncovered an increased Cl conductance in the apical membrane of spontaneously and cAMP-stimulated tubules. Anthracene-9-carboxylic acid tended to reverse the stimulated state, and furosemide hyperpolarized Vbl,x. These results constitute the first evidence for secretory Cl transport in a renal proximal tubule. The electrophysiological responses to ion substitutions, stimulators, and inhibitors are strikingly similar to those of known Cl-transporting epithelia.


Sign in / Sign up

Export Citation Format

Share Document