Antibiotic-induced microbiome depletion alters renal glucose metabolism and exacerbates renal injury after ischemia-reperfusion injury in mice

Author(s):  
Yuika Osada ◽  
Shunsaku Nakagawa ◽  
Kanako Ishibe ◽  
Shota Takao ◽  
Aimi Shimazaki ◽  
...  

Recent studies have revealed the impact of antibiotic-induced microbiome depletion (AIMD) on host glucose homeostasis. The kidney has a critical role in systemic glucose homeostasis; however, information regarding the association between AIMD and renal glucose metabolism remains limited. Hence, we aimed to determine the effects of AIMD on renal glucose metabolism by inducing gut microbiome depletion using an antibiotic cocktail (ABX) composed of ampicillin, vancomycin, and levofloxacin in mice. The results showed that the bacterial 16s rRNA expression, luminal concentrations of short-chain fatty acids and bile acids, and plasma glucose levels were significantly lower in ABX-treated mice than in vehicle-treated mice. In addition, ABX treatment significantly reduced renal glucose and pyruvate levels. The mRNA expression levels of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the renal cortex were significantly higher in ABX-treated mice than in vehicle-treated mice. We further examined the impact of AIMD on the altered metabolic status in mice after ischemia-induced kidney injury. After exposure to ischemia for 60 min, the renal pyruvate concentrations were significantly lower in ABX-treated mice than in vehicle-treated mice. ABX treatment caused a more severe tubular injury after ischemia-reperfusion (IR). Our findings confirm that AIMD is associated with decreased pyruvate levels in the kidney, which may have been caused by the activation of renal gluconeogenesis. Thus, we hypothesized that AIMD would increase the vulnerability of the kidney to IR injury.

2017 ◽  
Vol 313 (2) ◽  
pp. F522-F534 ◽  
Author(s):  
Wesley M. Raup-Konsavage ◽  
Ting Gao ◽  
Timothy K. Cooper ◽  
Sidney M. Morris ◽  
W. Brian Reeves ◽  
...  

Novel therapeutic interventions for preventing or attenuating kidney injury following ischemia-reperfusion injury (IRI) remain a focus of significant interest. Currently, there are no definitive therapeutic or preventive approaches available for ischemic acute kidney injury (AKI). Our objective is to determine 1) whether renal arginase activity or expression is increased in renal IRI, and 2) whether arginase plays a role in development of renal IRI. The impact of arginase activity and expression on renal damage was evaluated in male C57BL/6J (wild type) and arginase-2 (ARG2)-deficient ( Arg2−/−) mice subjected to bilateral renal ischemia for 28 min, followed by reperfusion for 24 h. ARG2 expression and arginase activity significantly increased following renal IRI, paralleling the increase in kidney injury. Pharmacological blockade or genetic deficiency of Arg2 conferred kidney protection in renal IRI. Arg2−/− mice had significantly attenuated kidney injury and lower plasma creatinine and blood urea nitrogen levels after renal IRI. Blocking arginases using S-(2-boronoethyl)-l-cysteine (BEC) 18 h before ischemia mimicked arginase deficiency by reducing kidney injury, histopathological changes and kidney injury marker-1 expression, renal apoptosis, kidney inflammatory cell recruitment and inflammatory cytokines, and kidney oxidative stress; increasing kidney nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation, kidney peroxisome proliferator-activated receptor-γ coactivator-1α expression, and mitochondrial ATP; and preserving kidney mitochondrial ultrastructure compared with vehicle-treated IRI mice. Importantly, BEC-treated eNOS-knockout mice failed to reduce blood urea nitrogen and creatinine following renal IRI. These findings indicate that ARG2 plays a major role in renal IRI, via an eNOS-dependent mechanism, and that blocking ARG2 activity or expression could be a novel therapeutic approach for prevention of AKI.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan Yuan ◽  
Jia-ying Lin ◽  
Hong-jing Cui ◽  
Wei Zhao ◽  
Hui-ling Zheng ◽  
...  

The cytosolic isozyme of phosphoenolpyruvate carboxykinase (PCK1) was the first rate-limiting enzyme in the gluconeogenesis pathway, which exerted a critical role in maintaining the blood glucose levels. PCK1 has been established to be involved in various physiological and pathological processes, including glucose metabolism, lipid metabolism, diabetes, and tumorigenesis. Nonetheless, the association of PCK1 with aging process and the detailed underlying mechanisms of PCK1 on aging are still far to be elucidated. Hence, we herein constructed the PCK1-deficient (pck1Δ) and PCK1 overexpression (PCK1 OE) Saccharomyces cerevisiae. The results unveiled that PCK1 deficiency significantly shortened the replicative lifespan (RLS) in the S. cerevisiae, while overexpression of PCK1 prolonged the RLS. Additionally, we noted that the ROS level was significantly enhanced in PCK1-deficient strain and decreased in PCK1 OE strain. Then, a high throughput analysis by deep sequencing was performed in the pck1Δ and wild-type strains, in an attempt to shed light on the effect of PCK1 on the lifespan of aging process. The data showed that the most downregulated mRNAs were enriched in the regulatory pathways of glucose metabolism. Fascinatingly, among the differentially expressed mRNAs, PFK1 was one of the most upregulated genes, which was involved in the glycolysis process and ROS generation. Thus, we further constructed the pfk1Δpck1Δ strain by deletion of PFK1 in the PCK1-deficient strain. The results unraveled that pfk1Δpck1Δ strain significantly suppressed the ROS level and restored the RLS of pck1Δ strain. Taken together, our data suggested that PCK1 deficiency enhanced the ROS level and shortened the RLS of S. cerevisiae via PFK1.


2008 ◽  
Vol 294 (4) ◽  
pp. F739-F747 ◽  
Author(s):  
Weiwei Wang ◽  
W. Brian Reeves ◽  
Ganesan Ramesh

Endogenous mechanisms exist to limit inflammation. One such molecule is netrin. This study examined the impact of ischemia-reperfusion (I/R) on netrin expression and the role of netrin in preventing renal inflammation and injury. All three isoforms of netrin (1, 3, and 4) are expressed in normal kidney. I/R significantly downregulated netrin-1 and -4 mRNA expression, whereas expression of netrin-3 was moderately upregulated at 24 h of reperfusion. The netrin receptor UNC5B mRNA increased at 3 h and but decreased at later time points. Expression of a second netrin receptor, DCC, was not altered significantly. I/R was associated with dramatic changes in netrin-1 protein abundance and localization. Netrin-1 protein levels increased between 3 and 24 h after reperfusion. Immunolocalization showed an interstitial distribution of netrin-1 in sham-operated kidneys which colocalized with Von Willebrand Factor suggesting the presence of netrin-1 in peritubular capillaries. After I/R, interstitial netrin-1 expression decreased and netrin-1 appeared in tubular epithelial cells. By 72 h after reperfusion, netrin-1 reappeared in the interstitium while tubular epithelial staining decreased significantly. Downregulation of netrin-1 in the interstitium corresponded with increased MCP-1 and IL-6 expression and infiltration of leukocytes into the reperfused kidney. Administration of recombinant netrin-1 significantly improved kidney function (blood urea nitrogen: 161 ± 7 vs. 104 ± 24 mg/dl, creatinine: 1.3 ± 0.07 vs. 0.75 ± 0.16 mg/dl, P < 0.05 at 24 h) and reduced tubular damage and leukocyte infiltration in the outer medulla. These results suggest that downregulation of netrin-1 in vascular endothelial cells may promote endothelial cell activation and infiltration of leukocytes into the kidney thereby enhancing tubular injury.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 306
Author(s):  
Maxime Rossi ◽  
Kéziah Korpak ◽  
Arnaud Doerfler ◽  
Karim Zouaoui Boudjeltia

Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.


2020 ◽  
pp. 096032712097901
Author(s):  
Yasin Bagheri ◽  
Shadi Aghajani ◽  
Mahla Hosseinzadeh ◽  
Farid Hoshmandan ◽  
Abdollah Abdollahpour ◽  
...  

Background: Acute kidney injury (AKI) is the main clinical concern resulted from ischemia-reperfusion injury (IRI). Ample clinical data indicates that AKI is associated with distant organ dysfunctions and poor patients’ outcomes. Oxidative stress and inflammation have a critical role in the pathogenesis of organ injuries following IRI. The objectives of this study were to determine the impact of Gamma Oryzanol (GO), extracted from rice bran oil, on distant organs in rats after IRI. Methods: Twelve out of 24 Wistar rats were treated by one dosage of GO (100mg/kg) 1 h before I/R induction through both oral gavage and intraperitoneal injection. Then, the AKI model rats were induced by IRI. Oxidative stress and antioxidant protein levels were assessed in the brain, heart, and liver tissues in the experimental groups. Furthermore, the effects of GO on IRI-induced liver dysfunction, apoptosis, and inflammation were measured by Western blot. Results: GO pretreatment could significantly restore the levels and activity of antioxidant proteins in the brain, heart, and liver tissues (P < 0.05). Moreover, GO pretreatment could decrease the inflammatory cytokine (IL-1, IL-6, and TNF-α) in the liver (P < 0.01). By reducing Bax/Bcl-2 ratio and down-regulating caspase-3, GO could significantly diminish apoptosis in the liver tissue after the kidney I/R (P < 0.01). Additionally, GO could significantly diminish the deterioration of liver function in the kidney I/R model. Conclusion: GO protects distant organs against renal IRI-induced oxidative stress. Furthermore, it ameliorates liver function and remarkably exerts anti-oxidative, anti-inflammatory, and anti-apoptotic roles in the liver as an important detoxifying organ.


2004 ◽  
Vol 279 (50) ◽  
pp. 52282-52292 ◽  
Author(s):  
Kwon Moo Park ◽  
Jee In Kim ◽  
Youngkeun Ahn ◽  
Andrew J. Bonventre ◽  
Joseph V. Bonventre

Female mice are much more resistant to ischemia/reperfusion (I/R)-induced kidney injury when compared with males. Although estrogen administration can partially reduce kidney injury associated with I/R, we demonstrated that the presence of testosterone, more than the absence of estrogen, plays a critical role in gender differences in susceptibility of the kidney to ischemic injury. Testosterone administration to females increases kidney susceptibility to ischemia. Dihydrotestosterone, which can not be aromatized to estrogen, has effects equal to those of testosterone. Castration reduces the I/R-induced kidney injury. In contrast, ovariectomy does not affect kidney injury induced by ischemia in females. Testosterone reduces ischemia-induced activation of nitric oxide synthases (NOSs) and Akt and the ratio of extracellular signal related kinase (ERK) to c-jun N-terminal kinase (JNK) phosphorylation. Pharmacological (Nω-nitro-l-arginine) or genetic (endothelial NOS or inducible NOS) inhibition of NOSs in females enhances kidney susceptibility to ischemia. Nitric oxide increases Akt phosphorylation and protects Madin-Darby canine kidney epithelial cells from oxidant stress. Antagonists of androgen or estrogen receptors do not affect the gender differences. In conclusion, testosterone inhibits the post-ischemic activation of NOSs and Akt and the ratio of ERK to JNK phosphorylation through non-androgen receptor-medicated mechanisms, leading to increased inflammation and increased functional injury to the kidney. These findings provide a new paradigm for the design of therapies for ischemia/reperfusion injury and may be important to our understanding of the pathophysiology of acute renal failure in pregnancy where plasma androgen levels are elevated.


2021 ◽  
Vol 16 (1) ◽  
pp. 537-543
Author(s):  
Mei Zhang ◽  
Jing Yuan ◽  
Rong Dong ◽  
Jingjing Da ◽  
Qian Li ◽  
...  

Abstract Background Hyperhomocysteinemia (HHcy) plays an important role in the progression of many kidney diseases; however, the relationship between HHcy and ischemia-reperfusion injury (IRI)-induced acute kidney injury (IRI-induced AKI) is far from clear. In this study, we try to investigate the effect and possible mechanisms of HHcy on IRI-induced AKI. Methods Twenty C57/BL6 mice were reared with a regular diet or high methionine diet for 2 weeks (to generate HHcy mice); after that, mice were subgrouped to receive sham operation or ischemia-reperfusion surgery. Twenty four hour after reperfusion, serum creatinine, blood urea nitrogen, and Malondialdehyde (MDA) were measured. H&E staining for tubular injury, western blot for γH2AX, JNK, p-JNK, and cleaved caspase 3, and TUNEL assay for tubular cell apoptosis were also performed. Results Our results showed that HHcy did not influence the renal function and histological structure, as well as the levels of MDA, γH2AX, JNK, p-JNK, and tubular cell apoptosis in control mice. However, in IRI-induced AKI mice, HHcy caused severer renal dysfunction and tubular injury, higher levels of oxidative stress, DNA damage, JNK pathway activation, and tubular cell apoptosis. Conclusion Our results demonstrated that HHcy could exacerbate IRI-induced AKI, which may be achieved through promoting oxidative stress, DNA damage, JNK pathway activation, and consequent apoptosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Yang ◽  
Li’e Zang ◽  
Jingwen Cui ◽  
Linlin Wei

Abstract Background Stroke serves as a prevalent cerebrovascular disorder with severe cerebral ischemia/reperfusion (CIR) injury, in which neural stem cells (NSCs) play critical roles in the recovery of cerebral function. Circular RNAs (circRNAs) have been widely found to participate in stroke and NSC modulation. However, the role of circRNA TTC3 (circTTC3) in the regulation of CIR injury and NSCs remains elusive. Here, we aimed to explore the impact of circTTC3 on CIR injury and NSCs. Methods The middle cerebral artery occlusion/repression (MCAO/R) model was established in C57BL/6J mice. The primary astrocytes were isolated from the cerebellum from C57BL/6J mice. The primary NSCs were obtained from rat embryos. The effect of circTTC3 on CIR injury and NSCs was analyzed by TTC staining, qPCR, Western blot, LDH colorimetric kits, MTT assays, Annexin V-FITC Apoptosis Detection Kit, luciferase reporter gene assays, and others in the system. Results Significantly, the expression of circTTC3 was elevated in the MCAO/R mice and oxygen and glucose deprivation (OGD)-treated astrocytes. The depletion of circTTC3 attenuated cerebral infarction, neurological score, and brain water content. The OGD treatment induced apoptosis and the levels of lactate dehydrogenase (LDH) in the astrocytes, in which circTTC3 depletion reduced this phenotype in the system. Moreover, the depletion of circTTC3 promoted the proliferation and upregulated the nestin and β-tubulin III expression in NSCs. Mechanically, circTTC3 was able to sponge miR-372-3p, and miR-372-3p can target Toll-like receptor 4 (TLR4) in NSCs. The miR-372-3p inhibitor or TLR4 overexpression could reverse circTTC3 depletion-mediated astrocyte OGD injury and NSC regulation. Conclusion Thus, we conclude that circTTC3 regulates CIR injury and NSCs by the miR-372-3p/TLR4 axis in cerebral infarction. Our finding presents new insight into the mechanism by which circTTC3 modulates CIR injury and NSC dysfunction. CircTTC3, miR-372-3p, and TLR4 may serve as potential targets for the treatment of CIR injury during stroke.


2021 ◽  
pp. 1-15
Author(s):  
Lu Zhou ◽  
Xian Xue ◽  
Qing Hou ◽  
Chunsun Dai

<b><i>Background:</i></b> Ferroptosis, an iron-dependent form of regulated necrosis mediated by lipid peroxidation, predominantly polyunsaturated fatty acids, is involved in postischemic and toxic kidney injury. However, the role and mechanisms for tubular epithelial cell (TEC) ferroptosis in kidney fibrosis remain largely unknown. <b><i>Objectives:</i></b> The aim of the study was to decipher the role and mechanisms for TEC ferroptosis in kidney fibrosis. <b><i>Methods:</i></b> Mouse models with unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI) were generated. <b><i>Results:</i></b> We found that TEC ferroptosis exhibited as reduced glutathione peroxidase 4 (GPX4) expression and increased 4-hydroxynonenal abundance was appeared in kidneys from chronic kidney disease (CKD) patients and mouse models with UUO or IRI. Inhibition of ferroptosis could largely mitigate kidney injury, interstitial fibrosis, and inflammatory cell accumulation in mice after UUO or IRI. Additionally, treatment of TECs with (1S,3R)-RSL-3, an inhibitor of GPX4, could enhance cell ferroptosis and recruit macrophages. Furthermore, inhibiting TEC ferroptosis reduced monocyte chemotactic protein 1 (MCP-1) secretion and macrophage chemotaxis. <b><i>Conclusions:</i></b> This study uncovers that TEC ferroptosis may promote interstitial fibrosis and inflammation, and targeting ferroptosis may shine a light on protecting against kidney fibrosis in patients with CKDs.


Sign in / Sign up

Export Citation Format

Share Document