scholarly journals Renal autoregulation and passive pressure-flow relationships in diabetes and hypertension

2010 ◽  
Vol 299 (4) ◽  
pp. F837-F844 ◽  
Author(s):  
J. V. Hill ◽  
G. Findon ◽  
R. J. Appelhoff ◽  
Z. H. Endre

We investigated renal hemodynamics in isolated, perfused kidneys from rat models of diabetes and hypertension. Autoregulation and passive vascular responses were measured using stepped pressure ramps in the presence of angiotensin II (pEC50) or papaverine (0.1 mM), respectively. Male diabetic heterozygote m(Ren2)27 rats were compared with three male control groups: nondiabetic, normotensive Sprague-Dawley (SD) rats; nondiabetic, hypertensive heterozygote m(Ren2)27 rats; and diabetic, normotensive SD rats. Kidney function (proteinuria, creatinine clearance) was monitored before induction and at monthly intervals. Vascular function was measured in vitro in rats of induction age (6–8 wk) and at 2 and 4 mo postinduction. Renal flow correlated with age, but not diabetes or the Ren2 gene. Kidney weight-specific and body weight-specific renal flow differed between diabetic and nondiabetic rats because diabetic rats had higher kidney but lower body weights. Kidneys from all groups showed effective autoregulation in the presence of angiotensin II. The autoregulatory pressure threshold of m(Ren2)27 rats was higher, and the autoregulation pressure range was wider, compared with SD rats. When vascular smooth muscle activity was blocked with papaverine, pressure-flow responses differed between groups and with time. The m(Ren2)27 rat groups showed higher renal vascular resistance at lower pressures, suggesting greater vascular stiffness. In contrast, diabetic SD rat kidneys demonstrated reduced vessel stiffness. Flow was impaired in diabetic m(Ren2)27 rats at 4 mo, and this correlated with a decline in creatinine clearance. The results suggest that the characteristic late decline in renal filtration function in diabetes- and hypertension-related renal disease follows changes in renal vascular compliance.

1995 ◽  
Vol 269 (1) ◽  
pp. F110-F115 ◽  
Author(s):  
A. Tufro-McReddie ◽  
L. M. Romano ◽  
J. M. Harris ◽  
L. Ferder ◽  
R. A. Gomez

To test the hypothesis that angiotensin II (ANG II) is necessary for normal embryonic and postnatal kidney development, the effect of angiotensin receptor blockade or angiotensin converting enzyme inhibition on nephrovascular development was studied in newborn Sprague-Dawley rats and in Rana catesbeiana tadpoles undergoing prometamorphosis. Blockade of ANG II type 1 receptor (AT1) in newborn rats induced an arrest in nephrovascular maturation and renal growth, resulting in altered kidney architecture, characterized by fewer, thicker, and shorter afferent arterioles, reduced glomerular size and number, and tubular dilatation. Inhibition of ANG II generation in tadpoles induced even more marked developmental renal abnormalities. Blockade of ANG II type 2 receptor (AT2) in newborn rats did not alter renal growth or morphology. Results indicate that ANG II regulates nephrovascular development, a role that is conserved across species.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Tao Yang ◽  
Ty Redler ◽  
Carla G Bueno Silva ◽  
Rebeca Arocha ◽  
Jordan Schmidt ◽  
...  

Emerging evidence demonstrates a significant link between gut dysbiosis and hypertension (HTN). Butyrate is one of the major fermented end-products of gut microbiota that reportedly produces beneficial effects on the immune system and metabolism. A contraction in butyrate-producing bacteria in the gut of spontaneously hypertensive rats (SHR) suggests that reduced butyrate may be associated with HTN. Considering its role in mitochondrial metabolism, we proposed that the positive anti-inflammatory effects of butyrate may be mediated via improvement in mitochondrial function in astrocytes. Methods: Sprague Dawley (SD) and SHR primary astrocytes from two-day old pups were cultured in DMEM, supplemented with 10% FBS and 1% pen/strep, for 14 days, prior to treatment with butyrate (0-1mM) for 4 hours. Cells were then subjected to the Seahorse XFe24 Extracellular Flux Analyzer to evaluate mitochondrial function following butyrate treatment. Additional samples were collected for total RNA isolation for real time PCR analysis of inflammatory factors and transcripts related to mitochondrial function and stress. Results: Butyrate significantly increased both basal and maximal mitochondrial respiration (by 3-4 fold, P<0.001) and elevated proton leak (by 4 fold, P<0.01) in astrocytes from SD rats but not SHR. Furthermore, we observed a trend for an increase in both ATP-linked and non-mitochondrial respiration in SD astrocytes compared to SHR (by 2-3 fold, P=0.07). This was associated with a significant reduction in relative expression levels in catalase (by 50%, P<0.05) and a trend in reduction in Sod1 and Sod2 (by 25%-50%, P=0.1) in astrocytes harvested from SD rats but not the SHR. Conversely, butyrate significantly lowered expression of pro-inflammatory Ccl2 (by 33%, P<0.05) and Tlr4 (by 48%, P <0.05) in astrocytes of SHR, but not SD rats. Conclusion: Butyrate modulated mitochondrial bioenergetics in SD but not the SHR, suggesting that the mitochondria of astrocytes may be less sensitive to the effects of butyrate in HTN. In addition, butyrate reduced inflammatory mediators in the SHR, but had no effect in the SD rat astrocytes. Thus, central anti-inflammatory effects of butyrate may be mediated via a mitochondria-independent mechanism.


1988 ◽  
Vol 254 (3) ◽  
pp. F440-F444 ◽  
Author(s):  
P. J. Veldkamp ◽  
P. K. Carmines ◽  
E. W. Inscho ◽  
L. G. Navar

The renal vascular actions of atrial natriuretic peptide (ANP) remain incompletely understood. The purpose of this study is to evaluate the effects of ANP on microvascular structures of the normal kidney. The in vitro blood-perfused juxtamedullary nephron technique was utilized to allow visualization of arcuate arteries and afferent and efferent arterioles. Donor rats were pretreated with captopril to eliminate possible interactions between angiotensin II and atriopeptin III (AP III). The effects of topical administration of 3 nM AP III were determined by videometric analysis of vessel inside diameters. Under control conditions, arcuate arterial diameter averaged 83 +/- 14 microns (n = 7), afferent arteriolar diameter was 20 +/- 4 microns (n = 7), and efferent arteriolar diameter was 16 +/- 2 microns (n = 7). During superfusion with AP III, arcuate arteries and afferent arterioles dilated 73 +/- 9 and 23 +/- 5%, respectively. Both returned to their control values when AP III was removed from the superfusate. Further experiments on arcuate arteries (n = 5) revealed that 0.3 nM AP III also vasodilated these vessels (26 +/- 9%); however, no significant effect was elicited by 0.03 nM AP III. In contrast to the vasodilator influence of AP III on preglomerular vessels, efferent arteriolar diameter was not altered by AP III exposure. These observations reveal that AP III can induce selective preglomerular vasodilation involving arcuate arteries as well as afferent arterioles, while efferent arteriolar diameter is not perceptibly influenced.


1990 ◽  
Vol 259 (3) ◽  
pp. C389-C396 ◽  
Author(s):  
B. C. Jubelin ◽  
M. S. Kannan

The in vitro membrane properties of neurons from superior cervical ganglia (SCG) of neonatal spontaneously hypertensive (SH), Wistar-Kyoto (WKY), and Sprague-Dawley (SD) rats were studied with microelectrodes. Neurons were obtained by enzymatic dissociation, plated, irradiated, and studied after 2-5 wk. Most SH neurons showed multiple action potentials in response to an intracellular long-duration depolarizing pulse (multiple firing), whereas most neurons from WKY or SD rats generated only one or two action potentials. Multiple firing was inhibited by low concentrations of cobalt (10(-5) M) but not by tetrodotoxin (TTX) (3 x 10(-6) M). Neither high calcium (5-10 x 10(-3) M) nor the Ca2+(-)channel opener BAY K 8644 (10(-6) M) could induce multiple firing in SD or WKY neurons. However, multiple firing was readily induced by apamin (10(-6) M) or tetraethylammonium chloride (5 x 10(-3) M) (Ca2+(-)activated K+(-)channels blockers), with cobalt and TTX sensitivities similar to native multiple-firing neurons. We conclude that 1) multiple firing is characteristic of neonate SH rats SCG neurons in vitro and depends on regenerative Ca2+ currents; 2) multiple firing in SH neurons results from a lack of activation of a Ca2+(-)activated K+ conductance and not from a lack of internal Ca2+ availability; and 3) multiple firing in SCG neurons mirrors a default in K+ conductance common to all cells in genetically hypertensive individuals.


2004 ◽  
Vol 287 (3) ◽  
pp. F404-F410 ◽  
Author(s):  
Nicolas Lerolle ◽  
Soline Bourgeois ◽  
Françoise Leviel ◽  
Gaëtan Lebrun ◽  
Michel Paillard ◽  
...  

NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT1) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the effect of angiotensin II on NaCl reabsorption in MTALH and, furthermore, on angiotensin II-dependent medullary interstitial osmolality. MTALHs from male Sprague-Dawley rats were isolated and microperfused in vitro; transepithelial net chloride absorption ( JCl) as well as transepithelial voltage ( Vte) were measured. Luminal or peritubular 10−11 and 10−10 M angiotensin II had no effect on JCl or Vte. However, 10−8 M luminal or peritubular angiotensin II reversibly decreased both JCl and Vte. The effect of both luminal and peritubular angiotensin II was prevented by the presence of losartan (10−6 M). By contrast, PD-23319, an AT2-receptor antagonist, did not alter the inhibitory effect of 10−8 M angiotensin II. Finally, no additive effect of luminal and peritubular angiotensin II was observed. We conclude that both luminal and peritubular angiotensin II inhibit NaCl absorption in the MTALH via AT1 receptors. Because of intrarenal angiotensin II synthesis, angiotensin II concentration in medullary tubular and interstitial fluids may be similar in vivo to the concentration that displays an inhibitory effect on NaCl reabsorption under the present experimental conditions.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1838 ◽  
Author(s):  
Yi Zhang ◽  
Ying Zhang ◽  
Xiao-fei Jin ◽  
Xiao-hong Zhou ◽  
Xian-hui Dong ◽  
...  

Background: Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury, and autophagy plays a role in the pathology. Astragaloside IV is a potential neuroprotectant, but its underlying mechanism on cerebral I/R injury needs to be explored. The objective of this study is to investigate the neuroprotective mechanism of Astragaloside IV against cerebral I/R injury. Methods: Middle cerebral artery occlusion method (MCAO) and oxygen and glucose deprivation/reoxygenation (OGD/R) method were used to simulate cerebral I/R injury in Sprague-Dawley (SD) rats and HT22 cells, respectively. The neurological score, 2,3,5-Triphe-nyltetrazolium chloride (TTC) staining, and transmission electron microscope were used to detect cerebral damage in SD rats. Cell viability and cytotoxicity assay were tested in vitro. Fluorescent staining and flow cytometry were applied to detect the level of apoptosis. Western blotting was conducted to examine the expression of proteins associated with autophagy. Results: This study found that Astragaloside IV could decrease the neurological score, reduce the infarct volume in the brain, and alleviate cerebral I/R injury in MCAO rats. Astragaloside IV promoted cell viability and balanced Bcl-2 and Bax expression in vitro, reduced the rate of apoptosis, decreased the expression of P62, and increased the expression of LC3II/LC3I in HT22 cells after OGD/R. Conclusions: These data suggested that Astragaloside IV plays a neuroprotective role by down-regulating apoptosis by promoting the degree of autophagy.


1990 ◽  
Vol 258 (2) ◽  
pp. E368-E376 ◽  
Author(s):  
G. Shillabeer ◽  
J. M. Forden ◽  
J. C. Russell ◽  
D. C. Lau

We have investigated the in vitro rate of replication and differentiation of preadipocytes derived from lean (+/+) and obese (cp/cp) male JCR:LA-corpulent (cp) rats in an attempt to identify mechanisms that regulate adipose tissue growth. Cp/cp rats were twofold heavier than age-matched lean rats by 9-10 mo. Cp/cp-derived preadipocytes demonstrated an inherently slower rate of replication than +/+ preadipocytes (population doubling time: cp/cp 52.3 +/- 9.6 h vs. +/+ 19.7 +/- 1.6 h), although the preadipocyte pool in the cp/cp was significantly greater. Cp/cp preadipocytes were resistant to hormonally induced differentiation (19.9 +/- 9.4% of cells accumulated lipid) but differentiated when cocultured with mature adipocytes to the same extent as preadipocytes derived from Sprague-Dawley (SD) rats (cp/cp 48.4 +/- 15.2% vs. SD 52.2 +/- 11.9%). In contrast, SD preadipocytes did not differentiate in response to mature adipocytes from +/+ rats (13.8 +/- 5.2%). Our observations suggest that preadipocyte replication and maturation may not be controlled in a coordinated manner.


2005 ◽  
Vol 98 (3) ◽  
pp. 772-779 ◽  
Author(s):  
Andrew D. Baines ◽  
Patrick Ho

Hypothetically either decreased nitric oxide (NO) or increased O2 could initiate 20-HETE-mediated vasoconstriction associated with hemoglobin-based blood substitutes (HBOC). To test this hypothesis, we infused Tm-Hb, an HBOC with low O2 affinity, into isoflurane-anesthetized Wistar (W) and Sprague-Dawley (SD) rats after exchanging 20% of their blood with Ringer lactate. For comparison we infused an equal amount of BSA or BSA with NG-nitro-l-arginine methyl ester (BSA+NAME). Tm-Hb increased blood pressure (BP) and renal vascular resistance (RVR) equally in W and SD rats. Renal blood flow (RBF; Doppler ultrasound) decreased. BSA decreased RVR and raised glomerular filtration rate. BSA+NAME raised BP, RVR, and GFR. HET0016, an inhibitor of 20-HETE production, blunted BP and RVR responses to Tm-Hb and BSA+NAME in SD but not W rats. Arterial O2 content with BSA was lower than with Tm-Hb but O2 delivery was 60% higher with BSA because of higher RBF. BSA raised Po2 (Oxylite) in cortex and medulla and reduced RVR. Tm-Hb decreased Po2 and increased RVR. Switching rats from breathing air to 100% O2 raised intrarenal Po2 two- to threefold and increased BP and RVR. HET0016 did not alter hyperoxic responses. In conclusion, 20-HETE contributes to vasoconstriction by Tm-Hb in SD but not in W rats, and increased 20-HETE activity results primarily from decreased NO.


1990 ◽  
Vol 259 (6) ◽  
pp. L451-L458 ◽  
Author(s):  
L. S. He ◽  
S. W. Chang ◽  
P. Ortiz de Montellano ◽  
T. J. Burke ◽  
N. F. Voelkel

The Fischer rat is known for its susceptibility to develop liver necrosis when challenged with paraquat (Smith et al., J. Pharmacol. Exp. Ther. 235: 172-177, 1985). We postulated that other organs, specifically the lung, may also be more susceptible to injury and examined whether lungs from Fischer (F) rats were injured more easily when challenged with active oxygen species than Sprague-Dawley (SD) rat lungs. We aimed to investigate whether increased susceptibility to oxidant injury was related to differences in lung antioxidant defenses. Perfused lungs from both rat strains were challenged by addition of H2O2 to the perfusate or by short-term hyperoxic ventilation. To assess nonoxidant modes of lung injury, we examined lung responses after exposure to protamine sulfate or neutrophil elastase. Intravascular H2O2 or 3 h in vitro hyperoxia caused lung edema in F but not SD rats, and elastase injured F rat lungs more than the lungs from SD rats. Protamine, however, injured the lungs from both strains to a similar degree. Catalase, but not superoxide dismutase or allopurinol, protected F rat lungs against edema, resulting from 3 h in vitro hyperoxia. The lung homogenate levels for reduced glutathione or conjugated dienes and the activities of lung tissue catalase, glutathione peroxidase, and cytochrome P-450 were not different between the two strains. Lung tissue ATP levels, however, were lower in F than in SD rats. Although the F rat strain appears to have an altered oxidant-antioxidant defense balance, the exact cause of the greater susceptibility to oxidant stress of the F rat strain remains elusive.


2015 ◽  
Vol 309 (2) ◽  
pp. R189-R195 ◽  
Author(s):  
Mercedes Perusquía ◽  
Clayton D. Greenway ◽  
Lisa M. Perkins ◽  
John N. Stallone

Testosterone (TES) and other androgens exert a direct vasorelaxing action on the vasculature in vitro that is structurally specific and independent of cytosolic androgen receptor (AR). The effects of intravenous androgen infusions on mean arterial blood pressure (BP) and heart rate (HR) were determined in conscious, unrestrained, chronically catheterized, ganglionically blocked (hexamethonium, HEX; 30 mg/kg ip) male Sprague-Dawley (SD) and testicular-feminized male (Tfm; AR-deficient) rats, 16–20 wk of age. BP and HR were recorded at baseline and with increasing doses of androgens (0.375–6.00 μmol·kg−1·min−1 iv; 10 min/dose). Data are expressed as means ± SE ( n = 5–8 rats/group). In SD rats, baseline BP and HR averaged 103 ± 4 mmHg and 353 ± 12 beats/min (bpm). TES produced a dose-dependent reduction in BP to a low of 87 ± 4 mmHg (Δ16%), while HR was unchanged (354 ± 14 bpm). Neither BP (109 ± 3 mmHg) nor HR (395 ± 13 bpm) were altered by vehicle (10% EtOH in 0.9% saline; 0.15 ml·kg−1·min−1, iv). In Tfm, TES produced a similar reduction in BP (99 ± 3 to 86 ± 3 mmHg, Δ13%); HR was unchanged (369 ± 18 bpm). In SD, 5β-dihydrotestosterone (genomically inactive metabolite) produced a greater reduction in BP than TES (102 ± 2 to 79 ± 2 mmHg, Δ23%); HR was unchanged (361 ± 9). A 20-μg iv bolus of sodium nitroprusside in both SD and Tfm rats reduced BP 30–40 mmHg, while HR was unchanged, confirming blockade by HEX. Pretreatment of SD rats with neuronal nitric oxide synthase (nNOS) inhibitor (S-methyl-thiocitrulline, SMTC; 20 μg·kg−1·min−1 × 30 min) abolished the hypotensive effects of TES infusion on BP (104 ± 2 vs. 101 ± 2 mmHg) and HR (326 ± 11 vs. 324 ± 8 bpm). These data suggest the systemic hypotensive effect of TES and other androgens involves a direct vasodilatory action on the peripheral vasculature which, like the effect observed in isolated arteries, is structurally specific and AR-independent, and involves activation of nNOS.


Sign in / Sign up

Export Citation Format

Share Document