Cellular variability in the development of tight junctions after activation of protein kinase C

1992 ◽  
Vol 263 (2) ◽  
pp. F293-F300 ◽  
Author(s):  
B. Ellis ◽  
E. E. Schneeberger ◽  
C. A. Rabito

Phorbol 12-myristate 13-acetate (PMA) decreases the tight junction conductance (TJC) during the reorganization of LLC-PK1A monolayers, but has the opposite effect in LLC-PK1B4, MDCK, and MDCK4 cells. Because no protein synthesis was required for the effects of PMA on the TJC of LLC-PK1A monolayers, we conclude that the regulation of the tight junction by protein kinase C (PKC) is a posttranslational event. In LLC-PK1A monolayers with existing tight junctions, PMA produced an initial increase in the TJC that reverted later to control values despite the continuous presence of PMA and cycloheximide. The inhibitory effect of PMA on the other cell lines was not revertible. A downregulation of total PKC activity and phorbol ester receptors was only observed during the reorganization of LLC-PK1A monolayers. PMA further increases this downregulation. This indicates that the peculiar response to PMA observed in LLC-PK1A monolayers is the result of two concurrent events: 1) the early activation of the enzyme just before the reorganization of the tight junctions begin, and 2) its late downregulation induced after prolonged exposure to phorbol esters. We conclude that PKC regulates the development of the occluding junctions, but through different mechanisms dependent on the characteristics of the cells.

Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 977-989 ◽  
Author(s):  
Ling Zhu ◽  
Xin Li ◽  
Robin Zeng ◽  
George I. Gorodeski

Treatment of human cervical epithelial CaSki cells with ATP or with the diacylglyceride sn-1,2-dioctanoyl diglyceride (diC8) induced a staurosporine-sensitive transient increase, followed by a late decrease, in tight-junctional resistance (RTJ). CaSki cells express two immunoreactive forms of occludin, 65 and 50 kDa. Treatments with ATP and diC8 decreased the density of the 65-kDa form and increased the density of the 50-kDa form. ATP also decreased threonine phosphorylation of the 65-kDa form and increased threonine phosphorylation of the 50-kDa form and tyrosine phosphorylation of the 65- and 50-kDa forms. Staurosporine decreased acutely threonine and tyrosine phosphorylation of the two isoforms and in cells pretreated with staurosporine ATP increased acutely the density of the 65-kDa form and threonine phosphorylation of the 65-kDa form. Treatment with N-acetyl-leucinyl-leucinyl-norleucinal increased the densities of the 65- and 50-kDa forms. Pretreatment with N-acetyl-leucinyl-leucinyl-norleucinal attenuated the late decreases in RTJ induced by ATP and diC8 and the decrease in the 65-kDa and increase in the 50-kDa forms induced by ATP. Correlation analyses showed that high levels of RTJ correlated with the 65-kDa form, whereas low levels of RTJ correlated negatively with the 65-kDa form and positively with the 50-kDa form. The results suggest that in CaSki cells 1) occludin determines gating of the tight junctions, 2) changes in occludin phosphorylation status and composition regulate the RTJ, 3) protein kinase-C-mediated, threonine dephosphorylation of the 65-kDa occludin form increases the resistance of assembled tight junctions, 4) the early stage of tight junction disassembly involves calpain-mediated breakdown of occludin 65-kDa form to the 50-kDa form, and 5) increased levels of the 50-kDa form interfere with occludin gating of the tight junctions.


1989 ◽  
Vol 256 (2) ◽  
pp. G356-G363 ◽  
Author(s):  
T. Chiba ◽  
S. K. Fisher ◽  
B. W. Agranoff ◽  
T. Yamada

In previous studies we demonstrated that parietal cell stimulation with gastrin and carbamoylcholine (carbachol) is accompanied by increased turnover of membrane inositol phospholipids. We conducted the present studies to examine whether membrane-associated protein kinase C activity is enhanced as a consequence of these events and to explore the role of this enzyme in regulating parietal cell function. We observed that carbachol and gastrin dose dependently increased membrane-associated protein kinase C activity while histamine did not. Furthermore, compounds such as phorbol esters and diacylglycerol, which are known to be direct stimulants of protein kinase C activity, also stimulated parietal cell aminopyrine uptake. In contrast, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate and the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol inhibited both aminopyrine uptake and membrane inositol phospholipid turnover in parietal cells induced by carbachol and gastrin. The inhibitory effect appeared to result from reduction in the quantity of muscarinic and gastrin receptors without alterations in their specific affinities. These data suggest that protein kinase C mediates stimulation of parietal cells by gastrin and carbachol but also activates an autoregulatory mechanism via downregulation of muscarinic and gastrin receptors.


1988 ◽  
Vol 256 (2) ◽  
pp. 677-680 ◽  
Author(s):  
H Sugiya ◽  
J W Putney

Substance P-induced inositol trisphosphate (InsP3) formation was inhibited by 1 microM-4 beta-phorbol 12,13-dibutyrate (PDBu) in rat parotid acinar cells. The inhibitory effect of PDBu was reversed by the protein kinase C inhibitors H-7 or K252a. Substance P also elicits a persistent desensitization of subsequent substance P-stimulated InsP3 formation. However, this desensitization was not inhibited by H-7. In addition, H-7 had no effect on the time course of substance P-induced InsP3 formation. These results suggest that, although activation of protein kinase C by phorbol esters can inhibit the substance P receptor-linked phospholipase C pathway, this mechanism apparently plays little, if any, role in regulating this system after activation by substance P.


1985 ◽  
Vol 232 (2) ◽  
pp. 609-611 ◽  
Author(s):  
N G Anderson ◽  
P J Hanson

The relative potency with which phorbol esters inhibited histamine-stimulated aminopyrine accumulation (an index of acid secretion) paralleled that which has been established for the activation of purified protein kinase C. The inhibitory effect of 1-oleoyl-2-acetylglycerol on aminopyrine accumulation stimulated by various secretagogues was similar to that of 12-O-tetradecanoylphorbol 13-acetate. Protein kinase C activity was present in a parietal-cell-enriched fraction. In conclusion, protein kinase C could be involved in mechanisms regulating gastric acid secretion.


1989 ◽  
Vol 256 (2) ◽  
pp. F370-F373 ◽  
Author(s):  
A. Bertorello ◽  
A. Aperia

Activators of protein kinase C (PKC) inhibit sodium transport in proximal tubules (PT) (M. Baum and S. R. Hays. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F9-F14, 1988. In this study we have evaluated the effect of PKC activators on the enzyme responsible for active sodium transport, Na+-K+-ATPase. Both endogenous (diacylglycerol, DAG) and exogenous (phorbol esters, PE) activators were used. Enzyme activity was determined in permeabilized single PT segments. In vehicle-incubated PT, Na+-K+-ATPase activity (pmol Pi.mm tubule-1.-1 h) was 1,403 +/- 128. The synthetic DAG, L-alpha-l-oleoyl-2-acetoyl-sn-3-glycerol (10(-4) M) significantly inhibited Na+-K+-ATPase activity to 673 +/- 51, P less than 0.05. The PE-phorbol 12,13-dibutyrate (PDBu), induced a time- and dose-dependent inhibition of Na+-K+-ATPase activity. Inhibition was significant at 15 and maximal at 20 min. Na+-K+-ATPase activity in PT incubated with PDBu was 796 +/- 171 (10(-8) M), 570 +/- 198 (10(-7) M), and 484 +/- 130 (10(-6) M). A PE that does not activate PKC, 4-alpha-phorbol didecanoate, did not inhibit Na+-K+-ATPase activity. PDBu 10(-7) M had no effect on purified Na+-K+-ATPase. Sphingosine (SP), a PKC inhibitor, abolished the inhibitory effect of PDBu (10(-7) M) on Na+-K+-ATPase activity. Dopamine (DA) is a physiological inhibitor of Na+-K+-ATPase activity in PT [A. Bertorello, T. Hokfelt, M. Goldstein, and A. Aperia Am. J. Physiol. 254(Renal Fluid Electrolyte Physiol. 23): F795-F801, 1988].(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (3) ◽  
pp. E368-E374
Author(s):  
J. S. Davis ◽  
L. L. Weakland ◽  
R. G. Coffey ◽  
L. A. West

Luteinizing hormone (LH) stimulates the formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol trisphosphate (IP3) in rat granulosa cells. This report describes the effects of protein kinase C activators on second messenger generation in isolated rat granulosa cells. The protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) completely inhibited LH-stimulated inositol phosphate accumulation. The inhibitory effects of TPA were rapid (5-15 min) and concentration dependent with 50 nM TPA producing maximally inhibitory effects. However 30-min incubations with 10-100 nM TPA had no effect on LH-stimulated cAMP or progesterone levels. The inhibitory effect of TPA could not be overcome by high concentrations of LH. TPA also inhibited gonadotropin-releasing hormone-stimulated phospholipase C activity, although to a much lesser extent. Increased inositol phosphate degradation and reduced inositol phospholipid synthesis were unlikely explanations for the effects of TPA. The results indicate that phorbol esters modulate the inositol phospholipid-phospholipase C transmembrane signaling system in rat granulosa cells. The results suggest that phorbol esters may alter the coupling of the hormone receptor complex to phospholipase C.


1993 ◽  
Vol 289 (3) ◽  
pp. 919-926 ◽  
Author(s):  
J E Merritt ◽  
K E Moores ◽  
A T Evans ◽  
P Sharma ◽  
F J Evans ◽  
...  

In this study, the effects of a series of phorbol esters with different spectra of biological activities and different patterns of activation of the isoenzymes of protein kinase C (PKC) have been studied in human neutrophils. The aim was to gain more information on which isoenzymes of PKC are involved in neutrophil activation, specifically inhibition of fMet-Leu-Phe (fMLP)-stimulated bivalent cation influx and stimulation of O2-. release (either alone or potentiation of the response to fMLP). Prior addition of both phorbol 12-myristate 13-acetate (PMA) and sapintoxin A (SAPA) inhibited fMLP-stimulated Mn2+ influx. Higher concentrations of resiniferatoxin (RX) were also inhibitory, inhibition being more apparent at longer preincubation times. However, 12-deoxyphorbol 13-O-phenylacetate (DOPPA) showed only a slight inhibitory effect and required a prolonged preincubation. PMA, SAPA and RX, but not DOPPA, stimulated O2-. release by themselves. Lower concentrations of PMA, SAPA and RX, which were ineffective alone, considerably potentiated O2-. release stimulated by fMLP, whereas DOPPA had little or no effect. These results rule out a major role for PKC-delta (not activated by SAPA) and PKC-beta 1 (activated by DOPPA), but suggest the involvement of RX kinase in addition to PKC in the inhibition of fMLP-stimulated Mn2+ influx and potentiation of fMLP-stimulated O2-. release. However, when the cytosolic free Ca2+ concentration ([Ca2+]i) was elevated with the Ca2+ ionophore ionomycin, DOPPA was able to stimulate O2-. release, which probably reflects the known Ca2+ requirement for activation of PKC-beta 1 by DOPPA in vitro. The effects of the other phorbols were also enhanced when [Ca2+]i was elevated; all of the phorbols synergize, to variable extents, with Ca2+ to activate PKC in vitro. Enhancement of RX-stimulated O2- release by elevation of [Ca2+]i was unexpected, since RX kinase has been reported to be inhibited by high concentrations of Ca2+ in vitro. Finally, use of fura-2 and SK&F 96365 to manipulate the fMLP-stimulated rise in [Ca2+]i showed that when fMLP was able to evoke its normal rise in [Ca2+]i (to a peak of 700-900 nM), O2-. release was potentiated by PMA, SAPA and RX. However, when fMLP was only able to evoke a small increase in [Ca2+]i (to a peak of 400 nM), potentiation by PMA was unaffected but potentiation by SAPA and RX was considerably reduced. This observation agrees with published data demonstrating that activation of PKC in vitro by SAPA is more Ca(2+)-dependent than activation by PMA.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 285 (2) ◽  
pp. 673-679 ◽  
Author(s):  
N van den Berghe ◽  
A B Vaandrager ◽  
A G M Bot ◽  
P J Parker ◽  
H R de Jonge

The involvement of protein kinase C (PKC) in the regulation of intestinal ion secretion was studied in polarized monolayers of the HT29cl.19A human colon carcinoma cell line. Carbachol, phorbol esters [PMA (phorbol 12-myristate 13-acetate) and PDB (phorbol 12,13-dibutyrate)] and 8-bromo cyclic AMP (8-Br-cAMP) induced Cl secretion, as measured by a rise in the short-circuit current (ISC). The electrical response to carbachol coincided with a transient translocation of PKC alpha from the soluble to the particulate fraction. The carbachol-, PDB- and 8-Br-cAMP-induced ISC responses were inhibited by pretreatment of the cells with PMA (0.5 microM) for 2 h, a time period in which PKC alpha, beta 1 and gamma levels were not changed. As shown by 86Rb+ and 125I- efflux studies, the main targets for this inhibition were basolateral K+ transporters rather than apical Cl- channels. Prolonged exposure to PMA (24 h) led to a 60% recovery of the 8-Br-cAMP response, but not of the carbachol- or PDB-provoked secretion. As shown by immunoblotting with PKC-isoenzyme-specific antisera, the recovery of the 8-Br-cAMP response coincided with the down-regulation of PKC alpha, whereas the levels of PKC beta 1 and gamma were unmodified. These results suggest that PKC alpha, but not PKC beta 1 or gamma, is involved in both acute stimulation and chronic inhibition of ion secretion in the HT29cl.19A colonic cell line.


1987 ◽  
Author(s):  
Sara Hopple ◽  
Mark Bushfield ◽  
Fiona Murdoch ◽  
D Euan MacIntyre

Exogenous synthetic 1,2-diacylglycerols (e.g. 1,2-dioctanoylglycerol, DiC8) and 4β Phorbol esters (e.g. phorbol myristate acetate, PMA) routinely are used to probe the effects of protein Kinase C (PKC) on cellular responsiveness. Such agents act either independently or synergistically with elevated [Ca2+]i to induce platelet activation, but also inhibit agonist-induced inositol lipid metabolism and Ca2+ flux. These findings led to the concept that activated PKC can function as a bi-directional regulator of platelet reactivity. Therefore, DiCg and PMA were utilized to examine the effects of activated PKC on receptor-mediated stimulation and inhibition of adenylate cyclase, as monitored by cAMP accumulation. All studies were performed using intact human platelets in a modified Tyrodes solution, and cAMP was quantified by radioimmunoassay. Pretreatment (2 min.; 37°C) of platelets with PMA (≤ 300 nM) but not DiCg (200 μM) attenuated the elevation of platelet cAMP content evoked by PGD2 300 nM) but not by PGE1 (≤300 nM), PGI2 (≤100 nM) or adenosine (≤ 100 μM).These effects of PMA were unaffected by ADP scavengers, by Flurbiprofen (10 μM) or by cAMP phosphodiesterase inhibitors (IBMX, 1 mM) but were abolished by the PKC inhibitor Staurosporine (STP, 100 nM). In contrast, DiC8 (200 μM), but not PMA ( ≤ 300 nM), reduced the inhibitory effect of adrenaline (5 μM) on PGE1 (300 nM)-induced cAMP formation. This effect of DiCg was unaltered by STP (100 nM). Selective inhibition of PGD2-induced cAMP formation by PMA most probably can be attributed to PKC catalysed phosphorylation of the DP receptor. Reduction of the inhibitory effect of adrenaline by DiC8 could occur via an action at the α2 adrenoreceptor or Ni. These differential effects of PMA and DiC8 may result from differences in their distribution or efficacy, or to heterogeneity of platelet PKC.


Sign in / Sign up

Export Citation Format

Share Document