Oxygen uptake during the first minutes of heavy muscular exercise

1961 ◽  
Vol 16 (6) ◽  
pp. 971-976 ◽  
Author(s):  
Per-Olof Åstrand ◽  
Bengt Saltin

Oxygen uptake, heart rate, pulmonary ventilation, and blood lactic acid were studied in five subjects performing maximal work on a bicycle ergometer. After a 10-min warming up period work loads were varied so that exhaustion terminated exercise after about 2—8 min. Peak oxygen uptake and heart rate were practically identical (sd 3.1% and 3 beats/minute, respectively) in the experiments. The heavier the work was and the shorter the work time the higher became the pulmonary ventilation. There was a more rapid increase in the functions studied when the heaviest work loads were performed. It is concluded that aerobic capacity can be measured in a work test of from a few up to about 8 min duration, severity of work determining the actual work time necessary. Duration of work in studies of circulation and respiration during submaximal work should exceed 5 min. Submitted on June 23, 1961

1997 ◽  
Vol 82 (6) ◽  
pp. 1844-1852 ◽  
Author(s):  
Per-Olof Åstrand ◽  
Ulf Bergh ◽  
Åsa Kilbom

Åstrand, Per-Olof, Ulf Bergh, and Åsa Kilbom. A 33-yr follow-up of peak oxygen uptake and related variables of former physical education students. J. Appl. Physiol. 82(6): 1844–1852, 1997.—In 1949, 27 female and 26 male physical education students were studied at a mean age of 22 and 25 yr, respectively. They were restudied in 1970 and 1982. Measurements included oxygen uptake, heart rate, and pulmonary ventilation during submaximal and maximal exercise on a cycle ergometer and treadmill. After 21 yr, peak aerobic power was significantly reduced, from 2.90 to 2.18 l/min and from 4.09 to 3.28 l/min for women and men, respectively. After another 12 yr, the 1970 maxima were not reduced further. From 1949 to 1982 there was a decrease in peak heart rate from 196 to 177 beats/min in women and from 190 to 175 beats/min in men ( P < 0.05). Highest pulmonary ventilation did not change significantly. At an oxygen uptake of 1.5 l/min, the heart rate was the same in 1949 as in 1982. In conclusion, the physical fitness level of the subjects was well above average for these ages. From 1970 to 1982 there was no decline in the average peak aerobic power, a finding possibly related to increased habitual physical activity.


1979 ◽  
Vol 46 (6) ◽  
pp. 1066-1070 ◽  
Author(s):  
R. M. Glaser ◽  
M. N. Sawka ◽  
L. L. Laubach ◽  
A. G. Suryaprasad

To evaluate wheelchair activity in reference to a more familiar mode of locomotion, metabolic and cardiopulmonary responses to wheelchair ergometer (WERG) and bicycle ergometer (BERG) exercise were compared. Eighteen able-bodies subjects were tested on a combination wheelchair-bicycle ergometer. Oxygen uptake (VO2), respiratory exchange ratio (R), pulmonary ventilation (VE), ventilatory equivalent (VE/VO2), percent net mechanical efficiency (ME), and heart rate (HR) were determined at power output (PO) levels of 30, 90, and 150 kpm/min on each ergometer. For WERG and BERG exercise, VO2, VE, and HR increased linearly with PO. Generally, VO2, R, VE, VE/VO2, and HR responses were higher (P less than 0.05) during WERG than BERG exercise at each PO. Blood lactate was determined after 150 kpm/min, and found to be higher (P less than 0.05) during WERG than BERG exercise. ME increased with PO and was lower (P less than 0.05) for WERG than BERG exercise at each PO level. The greater metabolic and cardiopulmonary responses observed during WERG exercise may be due to inefficient biomechanics and the relatively small upper body musculature used for propulsion.


Author(s):  
Roger M. Glaser ◽  
Stephen A. Barr ◽  
Lloyd L. Laubach ◽  
Michael N. Sawka ◽  
Agaramg G. Suryaprasad

To study relative stresses of wheelchair activity, seven able-bodied subjects' metabolic (oxygen uptake) and cardiopulmonary (heart rate and pulmonary ventilation) responses were determined during wheelchair (arm stroking) and bicycle (leg pedaling) exercise at identical propulsion velocities and work rates. For this, subjects exercised on a combination wheelchair-bicycle ergometer at wheel velocities of 1.17, 2.34, and 3.51 km/hr. The six bouts of exercise were intennittent~5-min exercise periods interspersed by 10-min rest periods. At 1.17 km/hr, no significant differences were found between wheelchair and bicycle exercise for each of the monitored variables. At 2.34 and 3.51 km/hr, however, all responses were significantly higher for wheelchair exercise. At these higher velocities, calculated respiratory exchange ratio and ventilatory equivalent values were also significantly higher for wheelchair exercise. These results suggest that acute exposure to wheelchair activity could be relatively stressful and could limit rehabilitative efforts.


2018 ◽  
Vol 3 (57) ◽  
Author(s):  
Roma Aleksandravičienė ◽  
Arvydas Stasiulis

The aim of this study was to characterize heart rate (HR), oxygen uptake and pulmonary ventilation during competitiveaerobic gymnastics routine in a group of elite women athletes. The subjects were Lithuanian aerobic women gymnasts,members of national team (21.6, 4.4) years old). All subjects performed a maximal incremental treadmill test in thelaboratory and competitive aerobic gymnastics exercises in group category. Heart rate was continuously recordedusing the heart rate measurement equipment Polar ACCUREX-Plus. During the incremental treadmill test HRdeflection point and other parameters of aerobic capacity were determined from the relationship of HR to runningspeed. During the aerobic gymnastics routine pulmonary gas exchange parameters and heart rate were continuouslymeasured using the telemetric equipment Cortex 3B. The changes of HR, minute ventilation and oxygen uptake wereanalyzed by adopting monoexponential function.The results showed that HR values during the competitive aerobic gymnastics routine were higher than HR break pointwhich is near the lactate accumulation threshold (reaching 95.2 (4.2)% of maximal HR). Oxygen uptake duringcompetitive routine reached 81.3 (5.8)% of maximal oxygen uptake. Rather high blood lactate accumulation(7.50 mmol / l) at the third minute after exercise show the high intensity of exercise. These results allows us to considerthat aerobic gymnastics is a sport with high cardiorespiratory and metabolic demands, in which aerobic and anaerobicsources are intensely activated.Keywords: aerobic gymnastics, aerobic capacity, pulmonary gas exchange, lactate, heart rate deflection point.


1965 ◽  
Vol 20 (3) ◽  
pp. 509-513 ◽  
Author(s):  
R. G. Glassford ◽  
G. H. Y. Baycroft ◽  
A. W. Sedgwick ◽  
R. B. J. Macnab

Twenty-four male subjects aged 17–33 were given three direct tests of maximal oxygen uptake and one indirect test. The direct tests were those of Mitchell, Sproule, and Chapman (treadmill); Taylor, Buskirk, and Henschel (treadmill); and Åstrand (bicycle ergometer). The indirect test was the Åstrand-Ryhming nomogram (bicycle ergometer) employing heart rate response to submaximal work. In addition, the Johnson, Brouha, and Darling physical fitness test was administered. The two treadmill tests and the indirect test yielded significantly higher mean values than did the direct bicycle test. However no other significant differences in mean values occurred. Correlation coefficients between the various oxygen uptake tests as well as the fitness test were all found to be significant (.62–.83), i.e., greater than zero. No correlation obtained proved to be significantly greater than any other. The results indicate that direct treadmill tests, employing greater muscle mass, yield higher maximal oxygen uptake values (8%) than does the direct bicycle ergometer test. The Åstrand-Ryhming nomogram appears to produce a good estimation of maximal oxygen uptake, in a population unaccustomed to cycling. erobic capacity; exercise; heart rate Submitted on September 17, 1964


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10831
Author(s):  
Yu-Chun Chung ◽  
Ching-Yu Huang ◽  
Huey-June Wu ◽  
Nai-Wen Kan ◽  
Chin-Shan Ho ◽  
...  

Background Cardiorespiratory fitness assessment is crucial for diagnosing health risks and assessing interventions. Direct measurement of maximum oxygen uptake (V̇O2 max) yields more objective and accurate results, but it is practical only in a laboratory setting. We therefore investigated whether a 3-min progressive knee-up and step (3MPKS) test can be used to estimate peak oxygen uptake in these settings. Method The data of 166 healthy adult participants were analyzed. We conducted a V̇O2 max test and a subsequent 3MPKS exercise test, in a balanced order, a week later. In a multivariate regression model, sex; age; relative V̇O2 max; body mass index (BMI); body fat percentage (BF); resting heart rate (HR0); and heart rates at the beginning as well as at the first, second, third, and fourth minutes (denoted by HR0, HR1, HR2, HR3, and HR4, respectively) during a step test were used as predictors. Moreover, R2 and standard error of estimate (SEE) were used to evaluate the accuracy of various body composition models in predicting V̇O2max. Results The predicted and actual V̇O2 max values were significantly correlated (BF% model: R2 = 0.624, SEE = 4.982; BMI model: R2 = 0.567, SEE = 5.153). The BF% model yielded more accurate predictions, and the model predictors were sex, age, BF%, HR0, ΔHR3−HR0, and ΔHR3−HR4. Conclusion In our study, involving Taiwanese adults, we constructed and verified a model to predict V̇O2 max, which indicates cardiorespiratory fitness. This model had the predictors sex, age, body composition, and heart rate changes during a step test. Our 3MPKS test has the potential to be widely used in epidemiological research to measure V̇O2 max and other health-related parameters.


2006 ◽  
Vol 31 (5) ◽  
pp. 541-548 ◽  
Author(s):  
Adrian W. Midgley ◽  
Lars R. McNaughton ◽  
Sean Carroll

This study investigated the utility of a verification phase for increasing confidence that a “true” maximal oxygen uptake had been elicited in 16 male distance runners (mean age (±SD), 38.7  (± 7.5 y)) during an incremental treadmill running test continued to volitional exhaustion. After the incremental test subjects performed a 10 min recovery walk and a verification phase performed to volitional exhaustion at a running speed 0.5 km·h–1 higher than that attained during the last completed stage of the incremental phase. Verification criteria were a verification phase peak oxygen uptake ≤ 2% higher than the incremental phase value and peak heart rate values within 2 beats·min–1 of each other. Of the 32 tests, 26 satisfied the oxygen uptake verification criterion and 23 satisfied the heart rate verification criterion. Peak heart rate was lower (p = 0.001) during the verification phase than during the incremental phase, suggesting that the verification protocol was inadequate in eliciting maximal values in some runners. This was further supported by the fact that 7 tests exhibited peak oxygen uptake values over 100 mL·min–1 (≥ 3%) lower than the peak values attained in the incremental phase. Further research is required to improve the verification procedure before its utility can be confirmed.


2019 ◽  
Vol 44 (10) ◽  
pp. 1057-1064 ◽  
Author(s):  
Nicole M. Gilbertson ◽  
Natalie Z.M. Eichner ◽  
Emily M. Heiston ◽  
Julian M. Gaitán ◽  
Monique E. Francois ◽  
...  

The objective of this study was to test if a low-calorie diet plus interval exercise (LCD+INT) improves adiposopathy, an endocrine dysfunction, when compared with an energy-deficit–matched LCD in obese women. Subjects (age: 48.2 ± 2.4 years, body mass index: 37.8 ± 1.3 kg/m2) were randomized to a 13-day LCD (n = 12; mixed meals of ∼1200 kcal/day) or LCD+INT (n = 12; 12 sessions of 60 min/day alternating 3 min at 50% and 90% peak heart rate). Exercise was estimated to expend 350 kcal per oxygen uptake–heart rate regression analysis and individuals were refed calories expended to match energy availability between groups. Absolute (post – pre caloric intake) and relative (total daily and exercise energy expenditure relative to calorie intake) energy deficits were calculated. Fitness (peak oxygen uptake) and body composition (BodPod; Cosmed USA Inc.) were measured and a 120-min, 75g oral glucose tolerance test was performed at pre- and post-intervention to assess adiposopathy (i.e., ratio of high molecular weight–adiponectin to leptin) and estimate insulin sensitivity. LCD and LCD+INT had similar absolute (P = 0.55) and relative (P = 0.76) energy deficits. LCD and LCD+INT had similar reductions in fat mass (both P < 0.001), despite LCD inducing greater weight loss (P = 0.02) than LCD+INT. Both treatments improved adiposopathy (P = 0.003) and peripheral insulin sensitivity (P = 0.02). Absolute energy deficit correlated to improved adiposopathy (r = –0.41, P = 0.05), and absolute and relative energy deficits were associated with increased insulin sensitivity (r = –0.47, P = 0.02; and r = –0.40, P = 0.05, respectively), independent of body composition changes and increased peak oxygen uptake. Taken together, LCD, with or without INT, improves adiposopathy in relation to insulin sensitivity in obese women, suggesting that a short-term energy deficit is key for reducing risk of type 2 diabetes.


1975 ◽  
Vol 39 (1) ◽  
pp. 135-144 ◽  
Author(s):  
B. J. Clark ◽  
R. F. Coburn

Changes in intracellular Po2 in myoglobin containing skeletal muscle during exercise were estimated in normal nonathlete subjects from measurements of shifts of CO between blood and muscle under conditions where the total body CO stores remained constant. Exercise was performed on a bicycle ergometer. In 1.5–2 and 6–7 min runs at Vo2 max with the subject breathing 21% O2, mean MbCO/HbCO increased 146 +/- 7 and 163 +/- 11% of resting values, respectively (P less than 0.05). With the subjects breathing 13–14% O2, in 1.5–2 and 6–7 min runs, Vo2 max fell an average of 4.3 +/- 5.1% and 12.0 +/- 5.2%, respectively, and mean MbCO/HbCO increased to 233 +/- 18% and 210 +/- 52% of resting value, respectively (P less than 0.05). These findings suggest that mean myoglobin Po2 fell during exercise at Vo2 max, with the subjects breathing 21% O2 and the decrease in mean myoglobin Po2 was greater with the subject breathing 13–14% O2. There was considerable variability in different subjects and in some, the data were not consistent with intracellular O2 availability limiting aerobic metabolism. The data support a postulate that there are several limiting factors for the aerobic capacity, including intracellular O2 availability.


Sign in / Sign up

Export Citation Format

Share Document