Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles

2007 ◽  
Vol 103 (2) ◽  
pp. 560-568 ◽  
Author(s):  
Janette L. Smith ◽  
Peter G. Martin ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

During sustained maximal voluntary contractions (MVCs), most fatigue occurs within the muscle, but some occurs because voluntary activation of the muscle declines (central fatigue), and some of this reflects suboptimal output from the motor cortex (supraspinal fatigue). This study examines whether supraspinal fatigue occurs during a sustained submaximal contraction of 5% MVC. Eight subjects sustained an isometric elbow flexion of 5% MVC for 70 min. Brief MVCs were performed every 3 min, with stimulation of the motor point, motor cortex, and brachial plexus. Perceived effort and pain, elbow flexion torque, and surface EMGs from biceps and brachioradialis were recorded. During the sustained 5% contraction, perceived effort increased from 0.5 to 3.9 (out of 10), and elbow flexor EMG increased steadily by ∼60–80%. Torque during brief MVCs fell to 72% of control values, while both the resting twitch and EMG declined progressively. Thus the sustained weak contraction caused fatigue, some of which was due to peripheral mechanisms. Voluntary activation measured by motor point and motor cortex stimulation methods fell to 90% and 80%, respectively. Thus some of the fatigue was central. Calculations based on the fall in voluntary activation measured with cortical stimulation indicate that about two-thirds of the fatigue was due to supraspinal mechanisms. Therefore, sustained performance of a very low-force contraction produces a progressive inability to drive the motor cortex optimally during brief MVCs. The effect of central fatigue on performance of the weak contraction is less clear, but it may contribute to the increase in perceived effort.

2011 ◽  
Vol 111 (3) ◽  
pp. 743-750 ◽  
Author(s):  
Serajul I. Khan ◽  
Chris J. McNeil ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

Muscle pain has widespread effects on motor performance, but the effect of pain on voluntary activation, which is the level of neural drive to contracting muscle, is not known. To determine whether induced muscle pain reduces voluntary activation during maximal voluntary contractions, voluntary activation of elbow flexors was assessed with both motor-point stimulation and transcranial magnetic stimulation over the motor cortex. In addition, we performed a psychophysical experiment to investigate the effect of induced muscle pain across a wide range of submaximal efforts (5–75% maximum). In all studies, elbow flexion torque was recorded before, during, and after experimental muscle pain by injection of 1 ml of 5% hypertonic saline into biceps. Injection of hypertonic saline evoked deep pain in the muscle (pain rating ∼5 on a scale from 0 to 10). Experimental muscle pain caused a small (∼5%) but significant reduction of maximal voluntary torque in the motor-point and motor cortical studies ( P < 0.001 and P = 0.045, respectively; n = 7). By contrast, experimental muscle pain had no significant effect on voluntary activation when assessed with motor-point and motor cortical stimulation although voluntary activation tested with motor-point stimulation was reduced by ∼2% in contractions after pain had resolved ( P = 0.003). Furthermore, induced muscle pain had no significant effect on torque output during submaximal efforts ( P > 0.05; n = 6), which suggests that muscle pain did not alter the relationship between the sense of effort and production of voluntary torque. Hence, the present study suggests that transient experimental muscle pain in biceps brachii has a limited effect on central motor pathways.


2010 ◽  
Vol 22 (4) ◽  
pp. 547-556 ◽  
Author(s):  
Albertas Skurvydas ◽  
Marius Brazaitis

The aim of the study was to evaluate the effect of plyometric training (PT) on central and peripheral (muscle) fatigue in prepubertal girls and boys. The boys (n = 13, age 10.3 ± 0.3 years) and girls (n = 13, age, 10.2 ± 0.3 years) performed continuous 2-min maximal voluntary contractions (MVCs) before and after 16 high-intensity PT sessions. PT comprised two training sessions per week of 30 jumps in each session with 20 s between jumps. The greatest effect of PT was on excitation–contraction coupling, (twitch force increased by 323% in boys and 21% in girls) and height of a counter–movement jump (increased by 37% in boys and 38% in girls). In contrast, the quadriceps voluntary activation index, central activation ratio, and MVC did not change significantly after PT. The thickness of the quadriceps muscle increased by 9% in boys and 14% in girls after PT. In conclusion, boys and girls demonstrated similar changes in indicators of central fatigue (50–60% decrease) and peripheral fatigue (45–55% decrease) after MVC before and after PT.


2022 ◽  
Author(s):  
Nelly Seusing ◽  
Sebastian Strauss ◽  
Robert Fleischmann ◽  
Christina Nafz ◽  
Sergiu Groppa ◽  
...  

Abstract ObjectiveThe role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate. Few studies have examined the task dependent modulation of ipsilateral motor evoked potentials (iMEPs). Here, we determined the location of upper limb biceps brachii (BB) representation within the ipsilateral primary motor cortex. MethodsMR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was undertaken with twenty healthy participants who made tonic unilateral, bilateral homologous or bilateral antagonistic elbow flexion-extension voluntary contractions. Map center of gravity (CoG) and area for each BB were obtained. ResultsThe map CoG of the ipsilateral BB was located more anterior-laterally than those of the contralateral BB within the primary motor cortex. However different tasks had no effect on either the iMEP CoG location or the size. ConclusionOur data suggests that ipsilateral and contralateral MEP might originate in distinct adjacent neural populations in the primary motor cortex, independent of task dependence.


2020 ◽  
Vol 128 (5) ◽  
pp. 1412-1422
Author(s):  
J. M. D’Amico ◽  
D. M. Rouffet ◽  
S. C. Gandevia ◽  
J. L. Taylor

We demonstrate that reductions in voluntary activation and motoneuron excitability following 2-min isometric maximal contractions in humans occur only when fatigue is produced through voluntary contractions and not through electrically stimulated contractions. This is contrary to studies that suggest that changes in the superimposed twitch and therefore voluntary activation are explained by changes in peripheral factors alone. Thus, the interpolated twitch technique remains a viable tool to assess voluntary activation and central fatigue.


2008 ◽  
Vol 104 (6) ◽  
pp. 1674-1682 ◽  
Author(s):  
Janette L. Smith ◽  
Jane E. Butler ◽  
Peter G. Martin ◽  
Rachel A. McBain ◽  
Janet L. Taylor

Exercise performance is impaired by increased respiratory work, yet the mechanism for this is unclear. This experiment assessed whether neural drive to an exercising muscle was affected by cortically driven increases in ventilation. On each of 5 days, eight subjects completed a 2-min maximal voluntary contraction (MVC) of the elbow flexor muscles, followed by 4 min of recovery, while transcranial magnetic stimulation tested for suboptimal neural drive to the muscle. On 1 day, subjects breathed without instructions under normocapnia. During the 2-min MVC, ventilation was ∼3.5 times that at rest. On another day, subjects breathed without instruction under hypercapnia. During the 2-min MVC, ventilation was ∼1.5 times that on the normocapnic day. On another 2 days under normocapnia, subjects voluntarily matched their breathing to the uninstructed breathing under normocapnia and hypercapnia using target feedback of the rate and inspiratory volume. On a fifth day under normocapnia, the volume feedback was set to each subject's vital capacity. On this day, ventilation during the 2-min MVC was approximately twice that on the uninstructed normocapnic day (or ∼7 times rest). The experimental manipulations succeeded in producing voluntary and involuntary hyperpnea. However, maximal voluntary force, fatigue and voluntary activation of the elbow flexor muscles were unaffected by cortically or chemically driven increases in ventilation. Results suggest that any effects of increased respiratory work on limb exercise performance are not due to a failure to drive both muscle groups optimally.


2003 ◽  
Vol 150 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Gabrielle Todd ◽  
Nicolas T. Petersen ◽  
Janet L. Taylor ◽  
S. C. Gandevia

2007 ◽  
Vol 102 (5) ◽  
pp. 1756-1766 ◽  
Author(s):  
Gabrielle Todd ◽  
Janet L. Taylor ◽  
Jane E. Butler ◽  
Peter G. Martin ◽  
Robert B. Gorman ◽  
...  

Force responses to transcranial magnetic stimulation of motor cortex (TMS) during exercise provide information about voluntary activation and contractile properties of the muscle. Here, TMS-generated twitches and muscle relaxation during the TMS-evoked silent period were measured in fresh, heated, and fatigued muscle. Subjects performed isometric contractions of elbow flexors in two studies. Torque and EMG were recorded from elbow flexor and extensor muscles. One study ( n = 6) measured muscle contraction times and relaxation rates during brief maximal and submaximal contractions in fresh and fatigued muscle. Another study ( n = 7) aimed to 1) assess the reproducibility of muscle contractile properties during brief voluntary contractions in fresh muscle, 2) validate the technique for contractile properties in passively heated muscle, and 3) apply the technique to study contractile properties during sustained maximal voluntary contractions. In both studies, muscle contractile properties during voluntary contractions were compared with the resting twitch evoked by motor nerve stimulation. Measurement of muscle contractile properties during voluntary contractions is reproducible in fresh muscle and reveals faster and slower muscle relaxation rates in heated and fatigued muscle, respectively. The technique is more sensitive to altered muscle state than the traditional motor nerve resting twitch. Use of TMS during sustained maximal contractions reveals slowing of muscle contraction and relaxation with different time courses and a decline in voluntary activation. Voluntary output from the motor cortex becomes insufficient to maintain complete activation of muscle, although slowing of muscle contraction and relaxation indicates that lower motor unit firing rates are required for fusion of force.


2020 ◽  
pp. 1-13
Author(s):  
Luigi Catino ◽  
Chiara Malloggi ◽  
Stefano Scarano ◽  
Valeria Cerina ◽  
Viviana Rota ◽  
...  

BACKGROUND: A method of measurement of voluntary activation (VA, percent of full muscle recruitment) during isometric and isokinetic concentric contractions of the quadriceps femoris (QF) at 60∘/s and 120∘/s was previously validated. OBJECTIVE: This study aimed to quantify the test-retest minimal real difference (MRD) of VA during isometric (ISOM) and isokinetic concentric contractions of QF (100∘/s, ISOK) in a sample of healthy individuals. METHODS: VA was measured through the interpolated twitch technique. Pairs of electrical stimuli were delivered to the QF at 40∘ of knee flexion during maximal voluntary contractions. Twenty-five healthy participants (20–38 years, 12 women, 13 men) completed two testing sessions with a 14-day interval. VA values were linearized through logit transformation (VAl). The MRD was estimated from intraclass correlation coefficients (model 2.1). RESULTS: The VA (median, range) was 84.20% (38.2–99.9%) in ISOM and 94.22% (33.8-100%) in ISOK. MRD was 0.78 and 1.12 logit for ISOM and ISOK, respectively. As an example, in terms of percent VA these values correspond to a change from 76% to 95% and from 79% to 98% in ISOM and in ISOK, respectively. CONCLUSIONS: The provided MRD values allow to detect significant individual changes in VA, as expected after training and rehabilitation programs.


2009 ◽  
Vol 106 (2) ◽  
pp. 556-565 ◽  
Author(s):  
Simranjit K. Sidhu ◽  
David J. Bentley ◽  
Timothy J. Carroll

Muscle fatigue is a reduction in the capacity to exert force and may involve a “central” component originating in the brain and/or spinal cord. Here we examined whether supraspinal factors contribute to impaired central drive after locomotor endurance exercise. On 2 separate days, 10 moderately active individuals completed a locomotor cycling exercise session or a control session. Brief (2 s) and sustained (30 s) isometric knee extension contractions were completed before and after locomotor exercise consisting of eight, 5-min bouts of cycling at 80% of maximum workload. In the control session, subjects completed the isometric contractions in a rested state. Twitch responses to supramaximal motor nerve stimulation and transcranial magnetic stimulation were obtained to assess peripheral force-generating capacity and voluntary activation. Maximum voluntary contraction (MVC) force during brief contractions decreased by 23 ± 6.3% after cycling exercise and remained 12 ± 2.8% below baseline 45 min later ( F1,9 > 15.5; P < 0.01). Resting twitch amplitudes declined by ∼45% ( F1,9 = 28.3; P < 0.001). Cortical voluntary activation declined from 90.6 ± 1.6% at baseline to 80.6 ± 2.1% after exercise ( F1,9 = 28.0; P < 0.001) and remained significantly reduced relative to control 30–45 min later (80.6 ± 3.4%; F1,9 = 10.7; P < 0.01). Thus locomotor exercise caused a long-lasting impairment in the capacity of the motor cortex to drive the knee extensors. Force was reduced more during sustained MVC after locomotor exercise than in the control session. Peripheral mechanisms contributed relatively more to this force reduction in the control session, whereas supraspinal fatigue played a greater role in sustained MVC reduction after locomotor exercise.


Sign in / Sign up

Export Citation Format

Share Document