Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle

2011 ◽  
Vol 110 (5) ◽  
pp. 1233-1240 ◽  
Author(s):  
Junichi Ushiyama ◽  
Masanori Katsu ◽  
Yoshihisa Masakado ◽  
Akio Kimura ◽  
Meigen Liu ◽  
...  

Oscillatory activity of the sensorimotor cortex shows coherence with muscle activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate sustained isometric contraction. We aimed to examine the acute changes in this corticomuscular coupling due to muscle fatigue and its effect on the steadiness of the exerted force. We quantified the coherence between the electroencephalogram (EEG) recorded over the sensorimotor cortex and the rectified surface electromyogram (EMG) of the tibialis anterior muscle as well as the coefficient of variance of the dorsiflexion force (ForceCV) and sum of the auto-power spectral density function of the force within the β-band (Forceβ-PSD) during 30% of maximal voluntary contraction (MVC) for 60 s before (prefatiguing task) and after (postfatiguing task) muscle fatigue induced by sustained isometric contraction at 50% of MVC until exhaustion in seven healthy male subjects. The magnitude of the EEG-EMG coherence increased in the postfatiguing task in six of seven subjects. The maximal peak of EEG-EMG coherence stayed within the β-band in both pre- and postfatiguing tasks. Interestingly, two subjects, who had no significant EEG-EMG coherence in the prefatiguing task, showed significant coherence in the postfatiguing task. Additionally, ForceCV and Forceβ-PSD significantly increased after muscle fatigue. These data suggest that when muscle fatigue develops, the central nervous system enhances oscillatory muscular activity in the β-band stronger coupled with the sensorimotor cortex activity accomplishing the sustained isometric contraction at lower performance levels.

2011 ◽  
Vol 106 (3) ◽  
pp. 1379-1388 ◽  
Author(s):  
Junichi Ushiyama ◽  
Tatsuya Suzuki ◽  
Yoshihisa Masakado ◽  
Kimitaka Hase ◽  
Akio Kimura ◽  
...  

Oscillatory activity of the sensorimotor cortex has been reported to show coherence with muscle activity in the 15- to 35-Hz frequency band (β-band) during weak to moderate intensity of isometric contraction. The present study examined the variance of the magnitude of the corticomuscular coherence across a large number of subjects. We quantified the coherence between EEG over the sensorimotor cortex and rectified electromyogram (EMG) from the tibialis anterior muscle during tonic isometric contraction at 30% of maximal effort in 100 healthy young individuals. We estimated the maximal peak of EEG-EMG coherence (Cohmax) and the ratio of the sum of the autopower spectral density function within the β-band to that of all frequency ranges for both EEG (EEGβ-PSD) and EMG (EMGβ-PSD) signals. The frequency histogram of Cohmax across all subjects showed a broad bell-shaped continuous distribution (range, 0.048–0.816). When the coherence was thresholded at the estimated significance level of P < 0.05 (0.114), 46 out of 100 subjects showed significant EEG-EMG coherence. Cohmax occurred within the β-band in the majority of subjects who showed significant EEG-EMG coherence ( n = 43). Furthermore, Cohmax showed significant positive correlations with both EEGβ-PSD ( r = 0.575, P < 0.001) and EMGβ-PSD ( r = 0.606, P < 0.001). These data suggest that even during simple tonic isometric contraction, the strength of oscillatory coupling between the sensorimotor cortex and spinal motoneurons varies among individuals and is a contributory factor determining muscle activation patterns such as the degree of grouped discharge in muscle activity within the β-band for each subject.


Author(s):  
Navaneethakrishna Makaram ◽  
Sridhar P. Arjunan ◽  
Dinesh Kumar ◽  
Ramakrishnan Swaminathan

In this, study, we have investigated to identify the muscle fatigue using spatial maps of High-Density Electromyography (HDEMG). The experiment involves subjects performing plantar flexion at 40% maximum voluntary contraction until fatigue. During the experiment, HDEMG signal was recorded from the tibialis anterior muscle. The monopolar and bipolar spatial intensity maps were extracted from the HDEMG signal. The random forest classifier with different tree configurations was tested to distinguish nonfatigue and fatigue condition. The results indicate that selected electrodes from the differential intensity map results in an accuracy of 83.3% with the number of trees set at 17. This method of spatial analysis of HDEMG signals may be extended to assess fatigue in real life scenarios.


2012 ◽  
Vol 112 (8) ◽  
pp. 1258-1267 ◽  
Author(s):  
Junichi Ushiyama ◽  
Yoshihisa Masakado ◽  
Toshiyuki Fujiwara ◽  
Tetsuya Tsuji ◽  
Kimitaka Hase ◽  
...  

The sensorimotor cortex activity measured by scalp EEG shows coherence with electromyogram (EMG) activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate intensity of isometric voluntary contraction. This coupling is known to change its frequency band to the 35- to 60-Hz band (γ-band) during strong contraction. This study aimed to examine whether such contraction level-related modulation of corticomuscular coupling differs between muscles with different muscle compositions and functions. In 11 healthy young adults, we quantified the coherence between EEG over the sensorimotor cortex and rectified EMG during tonic isometric voluntary contraction at 10–70% of maximal voluntary contraction of the tibialis anterior (TA) and soleus (SOL) muscles, respectively. In the TA, the EEG-EMG coherence shifted from the β-band to the γ-band with increasing contraction level. Indeed, the magnitude of β-band EEG-EMG coherence was significantly decreased, whereas that of γ-band coherence was significantly increased, when the contraction level was above 60% of maximal voluntary contraction. In contrast to the TA, the SOL showed no such frequency changes of EEG-EMG coherence with alterations in the contraction levels. In other words, the maximal peak of EEG-EMG coherence in the SOL existed within the β-band, irrespective of the contraction levels. These findings suggest that the central nervous system regulates the frequency of corticomuscular coupling to exert the desired levels of muscle force and, notably, that the applicable rhythmicity of the coupling for performing strong contractions differs between muscles, depending on the physiological muscle compositions and functions of the contracting muscle.


2019 ◽  
Vol 10 ◽  
Author(s):  
Filiz Ateş ◽  
Brenda L. Davies ◽  
Swati Chopra ◽  
Krista Coleman-Wood ◽  
William Litchy ◽  
...  

2020 ◽  
Vol 35 (1) ◽  
pp. 89-101
Author(s):  
Kanokwan Srisupornkornkool ◽  
Kanphajee Sornkaew ◽  
Kittithat Chatkanjanakool ◽  
Chayanit Ampairattana ◽  
Pariyanoot Pongtasom ◽  
...  

PurposeTo compare the electromyography (EMG) features during physical and imagined standing up in healthy young adults.Design/methodology/approachTwenty-two participants (ages ranged from 20–29 years old) were recruited to participate in this study. Electrodes were attached to the rectus femoris, biceps femoris, tibialis anterior and the medial gastrocnemius muscles of both sides to monitor the EMG features during physical and imagined standing up. The %maximal voluntary contraction (%MVC), onset and duration were calculated.FindingsThe onset and duration of each muscle of both sides had no statistically significant differences between physical and imagined standing up (p > 0.05). The %MVC of all four muscles during physical standing up was statistically significantly higher than during imagined standing up (p < 0.05) on both sides. Moreover, the tibialis anterior muscle of both sides showed a statistically significant contraction before the other muscles (p < 0.05) during physical and imagined standing up.Originality/valueMuscles can be activated during imagined movement, and the patterns of muscle activity during physical and imagined standing up were similar. Imagined movement may be used in rehabilitation as an alternative or additional technique combined with other techniques to enhance the STS skill.


2021 ◽  
Author(s):  
Davide Sometti ◽  
Lorenzo Semeia ◽  
Hui Chen ◽  
Juergen Dax ◽  
Cornelius Kronlage ◽  
...  

Muscle fatigue is well characterized electromyographically, nevertheless only information about summed potential differences is detectable. In contrast, recently developed quantum sensors optically pumped magnetometers (OPMs) offer the advantage of recording both the electrical current propagation in the muscle as well as its geometry, by measuring the magnetic field generated by the muscular action potentials. Magnetomyographic investigation of muscle fatigue is still lacking and it is an open question whether fatigue is characterized similarly in magnetomyography (MMG) compared to electromyography (EMG). Herein, we investigated the muscle fatigue during a 3x1-min strong isometric contraction of the rectus femoris muscle of 12 healthy subjects using simultaneous EMG-MMG (4-channel surface EMG and 4 OPM along the rectus femoris muscle). Both EMG and MMG showed the characteristic frequency decrease in the signal magnitude during isometric contraction, which is typical for muscle fatigue. In addition, it was shown that the main part of this frequency decrease seems to occur in the circular component of the magnetic field around the muscle fibers and less longitudinally along the muscle fibers. Overall, these results show not only that magnetomyography is capable of reproducing the electromyographic standards in identifying muscular fatigue, but it also adds relevant information about the spatial characterization of the signal. Therefore, OPM-MMG offers new insights for the study of muscular activity and might serve as a new, supplementary neurophysiological method.


Sign in / Sign up

Export Citation Format

Share Document