scholarly journals Calculating alveolar capillary conductance and pulmonary capillary blood volume: comparing the multiple- and single-inspired oxygen tension methods

2010 ◽  
Vol 109 (3) ◽  
pp. 643-653 ◽  
Author(s):  
Maile L. Ceridon ◽  
Kenneth C. Beck ◽  
Thomas P. Olson ◽  
Jordan A. Bilezikian ◽  
Bruce D. Johnson

Key elements for determining alveolar-capillary membrane conductance (Dm) and pulmonary capillary blood volume (Vc) from the lung diffusing capacity (Dl) for carbon monoxide (DlCO) or for nitric oxide (DlNO) are the reaction rate of carbon monoxide with hemoglobin (θCO) and the DmCO/DlNO relationship (α-ratio). Although a range of values have been reported, currently there is no consensus regarding these parameters. The study purpose was to define optimal parameters (θCO, α-ratio) that would experimentally substantiate calculations of Dm and Vc from the single-inspired O2 tension [inspired fraction of O2 (FiO2)] method relative to the multiple-FiO2 method. Eight healthy men were studied at rest and during moderate exercise (80-W cycle). Dm and Vc were determined by the multiple-FiO2 and single-FiO2 methods (rebreathe technique) and were tabulated by applying previously reported θCO equations (both methods) and by varying the α-ratio (single-FiO2 method) from 1.90 to 2.50. Values were then compared between methods throughout the examined α-ratios. Dm and Vc were critically dependent on the applied θCO equation. For the multiple-FiO2 method, Dm was highly variable between θCO equations (rest and exercise); the range of Vc was less widespread. For the single-FiO2 method, the θCO equation by Reeves and Park (1992) combined with an α-ratio between 2.08 and 2.26 gave values for Dm and Vc that most closely matched those from the multiple-FiO2 method and were also physiologically plausible compared with predicted values. We conclude that the parameters used to calculate Dm and Vc values from the single-FiO2 method (using DlCO and DlNO) can significantly influence results and should be evaluated within individual laboratories to obtain optimal values.

1985 ◽  
Vol 68 (1) ◽  
pp. 57-62 ◽  
Author(s):  
J. A. Wedzicha ◽  
F. E. Cotter ◽  
P. J. W. Wallis ◽  
A. C. Newland ◽  
D. W. Empey

1. The transfer factor for carbon monoxide and its subdivisions, the membrane diffusing capacity (Dm) and the pulmonary capillary blood volume (Vc), were measured in 16 patients with polycythaemia secondary to chronic hypoxic lung disease and in ten hypoxic non-polycythaemic control subjects. 2. The mean pulmonary capillary blood volume was significantly lower in the polycythaemic patients (31.6 ml, sd 11.2) compared with the control group (65.2 ml, sd 22.5) (P<0.001). 3. Erythrapheresis, as a method of isovolaemic haemodilution, was performed in 15 of the polycythaemic patients. The mean packed cell volume fell from 58 (sd 5)% to 47 (sd 5)% after treatment, with significant reductions in blood viscosity at both high and lower shear rates (P<0.001). 4. The mean pulmonary capillary blood volume increased from 32.3 ml (sd 11.3) before treatment to 48.7 ml (sd 18.7) after erythrapheresis (P<0.01), with no significant change in membrane diffusing capacity. 5. The rise in pulmonary capillary blood volume is another potential physiological advantage of the reduction of packed cell volume in patients with polycythaemia secondary to hypoxic lung disease.


1980 ◽  
Vol 303 (15) ◽  
pp. 842-845 ◽  
Author(s):  
G. V. R. K. Sharma ◽  
Virginia A. Burleson ◽  
Arthur A. Sasahara ◽  
Barbara Roggeveen ◽  
Nazarene Mondello ◽  
...  

2020 ◽  
Vol 56 (6) ◽  
pp. 2000379
Author(s):  
Plamen Bokov ◽  
Priscilla Boizeau ◽  
Jade Pautrat ◽  
Florence Missud ◽  
Aissatou Ba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document