Stimulation of the Human Frontal Eye Fields Modulates Sensitivity of Extrastriate Visual Cortex

2006 ◽  
Vol 96 (2) ◽  
pp. 941-945 ◽  
Author(s):  
Juha Silvanto ◽  
Nilli Lavie ◽  
Vincent Walsh

The precise role of frontal eye fields (FEF) in vision independent of their role in eye movements remains a matter of debate. One proposal is that the FEF exert top-down influences on the extrastriate visual cortex prior to eye movement preparation. Here we establish, by use of transcranial magnetic stimulation (TMS), that activity in the human FEFs has a direct effect on the sensitivity of extrastriate visual area MT/V5, and that the spatial organization of this top-down effect is lateralized in the human brain. We show that phosphene threshold—the TMS intensity required to elicit a visual perception—for MT/V5 stimulation changes as a function of the delay between the application of TMS over FEF and MT/V5. The effects were specific to the location and time of stimulation. Stimulation of FEF 20–40 ms prior to stimulation of MT/V5 decreased the intensity of MT/V5 stimulation required to elicit phosphenes: TMS of the right FEF changed the sensitivity of left and right MT/V5 whereas TMS of the left FEF changed the sensitivity only of the left MT/V5. Thus, the sensitivity of human extrastriate cortex is modulated by activity in the FEF.

2014 ◽  
Vol 26 (5) ◽  
pp. 1049-1065 ◽  
Author(s):  
Antje Buschschulte ◽  
Carsten N. Boehler ◽  
Hendrik Strumpf ◽  
Christian Stoppel ◽  
Hans-Jochen Heinze ◽  
...  

Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top–down settings defining reward relevance from those defining attention. To this end, we used a visual search paradigm in which the target's definition (attention to color) was dissociated from reward relevance by delivering monetary reward on search frames where a certain task-irrelevant color was combined with the target-defining color to form the target object. We assessed the state of neural biasing for the attended and reward-relevant color by analyzing the neuromagnetic brain response to asynchronously presented irrelevant distractor probes drawn in the target-defining color, the reward-relevant color, and a completely irrelevant color as a reference. We observed that for the prospect of moderate rewards, the target-defining color but not the reward-relevant color produced a selective enhancement of the neuromagnetic response between 180 and 280 msec in ventral extrastriate visual cortex. Increasing reward prospect caused a delayed attenuation (220–250 msec) of the response to reward probes, which followed a prior (160–180 msec) response enhancement in dorsal ACC. Notably, shorter latency responses in dorsal ACC were associated with stronger attenuation in extrastriate visual cortex. Finally, an analysis of the brain response to the search frames revealed that the presence of the reward-relevant color in search distractors elicited an enhanced response that was abolished after increasing reward size. The present data together indicate that when top–down definitions of reward relevance and attention are separated, the behavioral significance of reward-associated features is still rapidly coded in higher-level cortex areas, thereby commanding effective top–down inhibitory control to counter a selection bias for those features in extrastriate visual cortex.


1994 ◽  
Vol 71 (2) ◽  
pp. 821-825 ◽  
Author(s):  
T. Allison ◽  
H. Ginter ◽  
G. McCarthy ◽  
A. C. Nobre ◽  
A. Puce ◽  
...  

1. Twenty-four patients with electrodes chronically implanted on the surface of extrastriate visual cortex viewed faces, equiluminant scrambled faces, cars, scrambled cars, and butterflies. 2. A surface-negative potential, N200, was evoked by faces but not by the other categories of stimuli. N200 was recorded only from small regions of the left and right fusiform and inferior temporal gyri. Electrical stimulation of the same region frequently produced a temporary inability to name familiar faces. 3. The results suggest that discrete regions of inferior extrastriate visual cortex, varying in location between individuals, are specialized for the recognition of faces. These "face modules" appear to be intercalated among other functionally specific small regions.


2020 ◽  
Vol 132 (6) ◽  
pp. 2000-2007 ◽  
Author(s):  
Soroush Niketeghad ◽  
Abirami Muralidharan ◽  
Uday Patel ◽  
Jessy D. Dorn ◽  
Laura Bonelli ◽  
...  

Stimulation of primary visual cortices has the potential to restore some degree of vision to blind individuals. Developing safe and reliable visual cortical prostheses requires assessment of the long-term stability, feasibility, and safety of generating stimulation-evoked perceptions.A NeuroPace responsive neurostimulation system was implanted in a blind individual with an 8-year history of bare light perception, and stimulation-evoked phosphenes were evaluated over 19 months (41 test sessions). Electrical stimulation was delivered via two four-contact subdural electrode strips implanted over the right medial occipital cortex. Current and charge thresholds for eliciting visual perception (phosphenes) were measured, as were the shape, size, location, and intensity of the phosphenes. Adverse events were also assessed.Stimulation of all contacts resulted in phosphene perception. Phosphenes appeared completely or partially in the left hemifield. Stimulation of the electrodes below the calcarine sulcus elicited phosphenes in the superior hemifield and vice versa. Changing the stimulation parameters of frequency, pulse width, and burst duration affected current thresholds for eliciting phosphenes, and increasing the amplitude or frequency of stimulation resulted in brighter perceptions. While stimulation thresholds decreased between an average of 5% and 12% after 19 months, spatial mapping of phosphenes remained consistent over time. Although no serious adverse events were observed, the subject experienced mild headaches and dizziness in three instances, symptoms that did not persist for more than a few hours and for which no clinical intervention was required.Using an off-the-shelf neurostimulator, the authors were able to reliably generate phosphenes in different areas of the visual field over 19 months with no serious adverse events, providing preliminary proof of feasibility and safety to proceed with visual epicortical prosthetic clinical trials. Moreover, they systematically explored the relationship between stimulation parameters and phosphene thresholds and discovered the direct relation of perception thresholds based on primary visual cortex (V1) neuronal population excitation thresholds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Domenica Veniero ◽  
Joachim Gross ◽  
Stephanie Morand ◽  
Felix Duecker ◽  
Alexander T. Sack ◽  
...  

AbstractVoluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex. First, we documented changes to brain oscillations using electroencephalography and found evidence for a phase reset over occipital sites at beta frequency. We then probed for perceptual consequences of this top-down triggered phase reset and assessed its anatomical specificity. We show that FEF activation leads to cyclic modulation of visual perception and extrastriate but not primary visual cortex excitability, again at beta frequency. We conclude that top-down signals originating in FEF causally shape visual cortex activity and perception through mechanisms of oscillatory realignment.


2012 ◽  
Vol 24 (12) ◽  
pp. 2419-2427 ◽  
Author(s):  
Flavia Mancini ◽  
Nadia Bolognini ◽  
Patrick Haggard ◽  
Giuseppe Vallar

Multisensory interactions can produce analgesic effects. In particular, viewing one's own body reduces pain levels, perhaps because of changes in connectivity between visual areas specialized for body representation, and sensory areas underlying pain perception. We tested the causal role of the extrastriate visual cortex in triggering visually induced analgesia by modulating the excitability of this region with transcranial direct current stimulation (tDCS). Anodal, cathodal, or sham tDCS (2 mA, 10 min) was administered to 24 healthy participants over the right occipital or over the centro-parietal areas thought to be involved in the sensory processing of pain. Participants were required to rate the intensity of painful electrical stimuli while viewing either their left hand or an object occluding the left hand, both before and immediately after tDCS. We found that the analgesic effect of viewing the body was enhanced selectively by anodal stimulation of the occipital cortex. The effect was specific for the polarity and the site of stimulation. The present results indicate that visually induced analgesia may depend on neural signals from the extrastriate visual cortex.


2015 ◽  
Vol 370 (1677) ◽  
pp. 20140206 ◽  
Author(s):  
Nela Cicmil ◽  
Kristine Krug

Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Luca Cocchi ◽  
Martin V Sale ◽  
Leonardo L Gollo ◽  
Peter T Bell ◽  
Vinh T Nguyen ◽  
...  

Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.


2012 ◽  
Vol 24 (11) ◽  
pp. 2262-2267 ◽  
Author(s):  
Daniel T. Smith ◽  
Keira Ball ◽  
Amanda Ellison

Efficient visual exploration requires the ability to select possible target locations via spatial attention and to deselect previously inspected locations via inhibition of return (IOR). Although a great deal is known about the effects of spatial attention on processing in visual cortex, much less is known about the effects of IOR on early visual areas. One possibility is that IOR acts in an opposite way to spatial attention, such that, whereas spatial attention enhances target related neural signals in visual cortex, IOR suppress target-related signals. Using a novel dual-coil TMS protocol, we found that IOR reduced the probability of detecting a TMS-induced phosphene in extrastriate cortex (V5). Specifically, a nonpredictive spatial precue presented 500 or 800 msec before stimulation significantly reduced the probability of detecting a phosphene when the precue appeared contralaterally to the site of stimulation (i.e., ipsilaterally to the potential location of the phosphene), compared with ipsilaterally or centrally presented cues. This result demonstrates that IOR facilitates visual exploration by directly affecting the strength of target-related signals in extrastriate visual cortex. This result is consistent with neurophysiological models of attention, which postulate that IOR modulates perception by biasing competition between sensory representations.


Sign in / Sign up

Export Citation Format

Share Document