scholarly journals Induced cortical oscillations in turtle cortex are coherent at the mesoscale of population activity, but not at the microscale of the membrane potential of neurons

2017 ◽  
Vol 118 (5) ◽  
pp. 2579-2591 ◽  
Author(s):  
Mahmood S. Hoseini ◽  
Jeff Pobst ◽  
Nathaniel Wright ◽  
Wesley Clawson ◽  
Woodrow Shew ◽  
...  

Bursts of oscillatory neural activity have been hypothesized to be a core mechanism by which remote brain regions can communicate. Such a hypothesis raises the question to what extent oscillations are coherent across spatially distant neural populations. To address this question, we obtained local field potential (LFP) and membrane potential recordings from the visual cortex of turtle in response to visual stimulation of the retina. The time-frequency analysis of these recordings revealed pronounced bursts of oscillatory neural activity and a large trial-to-trial variability in the spectral and temporal properties of the observed oscillations. First, local bursts of oscillations varied from trial to trial in both burst duration and peak frequency. Second, oscillations of a given recording site were not autocoherent; i.e., the phase did not progress linearly in time. Third, LFP oscillations at spatially separate locations within the visual cortex were more phase coherent in the presence of visual stimulation than during ongoing activity. In contrast, the membrane potential oscillations from pairs of simultaneously recorded pyramidal neurons showed smaller phase coherence, which did not change when switching from black screen to visual stimulation. In conclusion, neuronal oscillations at distant locations in visual cortex are coherent at the mesoscale of population activity, but coherence is largely absent at the microscale of the membrane potential of neurons. NEW & NOTEWORTHY Coherent oscillatory neural activity has long been hypothesized as a potential mechanism for communication across locations in the brain. In this study we confirm the existence of coherent oscillations at the mesoscale of integrated cortical population activity. However, at the microscopic level of neurons, we find no evidence for coherence among oscillatory membrane potential fluctuations. These results raise questions about the applicability of the communication through coherence hypothesis to the level of the membrane potential.

2016 ◽  
Author(s):  
Michael C. Einstein ◽  
Pierre-Olivier Polack ◽  
Peyman Golshani

ABSTRACTGain modulation is a computational mechanism critical for sensory processing. Yet, the cellular mechanisms that decrease the gain of cortical neurons are unclear. To test if low frequency subthreshold oscillations could reduce neuronal gain during wakefulness, we measured the membrane potential of primary visual cortex (V1) layer 2/3 excitatory, parvalbumin-positive (PV+), and somatostatin-positive (SOM+) neurons in awake mice during passive visual stimulation and sensory discrimination tasks. We found prominent 3-5 Hz membrane potential oscillations that reduced the gain of excitatory neurons but not the gain of PV+ and SOM+ interneurons, which oscillated synchronously with excitatory neurons and fired strongly at the peak of de polarizations. 3-5 Hz oscillation prevalence and timing were strongly modulated by visual input and the animal’s behavior al response, suggesting that these oscillations are triggered to adjust sensory responses for specific behavioral contexts. Therefore, these findings reveal a novel gain reduction mechanism that adapts sensory processing to behavior.


2010 ◽  
Vol 38 (2) ◽  
pp. 516-521 ◽  
Author(s):  
Matt W. Jones

Most complex psychiatric disorders cannot be explained by pathology of a single brain region, but arise as a consequence of dysfunctional interactions between brain regions. Schizophrenia, in particular, has been described as a ‘disconnection syndrome’, but similar principles are likely to apply to depression and ADHD (attention deficit hyperactivity disorder). All these diseases are associated with impaired co-ordination of neural population activity, which manifests as abnormal EEG (electroencephalogram) and LFP (local field potential) oscillations both within and across subcortical and cortical brain regions. Importantly, it is increasingly possible to link oscillations and interactions at distinct frequencies to the physiology and/or pathology of distinct classes of neurons and interneurons. Such analyses increasingly implicate abnormal levels, timing or modulation of GABA (γ-aminobutyric acid)-ergic inhibition in brain disease. The present review discusses the evidence suggesting that dysfunction of a particular class of interneurons, marked by their expression of the calcium-binding protein parvalbumin, could contribute to the broad range of neurophysiological and behavioural symptoms characteristic of schizophrenia.


2014 ◽  
Vol 26 (11) ◽  
pp. 2540-2551 ◽  
Author(s):  
Max-Philipp Stenner ◽  
Markus Bauer ◽  
Patrick Haggard ◽  
Hans-Jochen Heinze ◽  
Ray Dolan

The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action–outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time–frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top–down control.


2021 ◽  
Author(s):  
James M Rowland ◽  
Thijs L van der Plas ◽  
Matthias Loidolt ◽  
Robert Michael Lees ◽  
Joshua Keeling ◽  
...  

The brains of higher organisms are composed of anatomically and functionally distinct regions performing specialised tasks; but regions do not operate in isolation. Orchestration of complex behaviours requires communication between brain regions, but how neural activity dynamics are organised to facilitate reliable transmission is not well understood. We studied this process directly by generating neural activity that propagates between brain regions and drives behaviour, allowing us to assess how populations of neurons in sensory cortex cooperate to transmit information. We achieved this by imaging two hierarchically organised and densely interconnected regions, the primary and secondary somatosensory cortex (S1 and S2) in mice while performing two-photon photostimulation of S1 neurons and assigning behavioural salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation signal, but also by the variability of S1 neural activity. Therefore, maximising the signal-to-noise ratio of the stimulus representation in cortex is critical to its continued propagation downstream. Further, we show that propagated, behaviourally salient activity elicits balanced, persistent, and generalised activation of the downstream region. Hence, our work adds to existing understanding of cortical function by identifying how population activity is formatted to ensure robust transmission of information, allowing specialised brain regions to communicate and coordinate behaviour.


2016 ◽  
Author(s):  
David Tingley ◽  
Andrew A. Alexander ◽  
Laleh K. Quinn ◽  
Andrea A. Chiba ◽  
Douglas Nitz

AbstractComplex behaviors demand temporal coordination among functionally distinct brain regions. The basal forebrain’s afferent and efferent structure suggests a capacity for mediating such coordination. During performance of a selective attention task, synaptic activity in this region was dominated by four amplitude-independent oscillations temporally organized by the phase of the slowest, a theta rhythm. Further, oscillatory amplitudes were precisely organized by task epoch and a robust input/output transform, from synchronous synaptic activity to spiking rates of basal forebrain neurons, was identified. For many neurons, spiking was temporally organized as phase precessing sequences against theta band field potential oscillations. Remarkably, theta phase precession advanced in parallel to task progression, rather than absolute spatial location or time. Together, the findings reveal a process by which associative brain regions can integrate independent oscillatory inputs and transform them into sequence-specific, rate-coded outputs that are adaptive to the pace with which organisms interact with their environment.


Author(s):  
Richard Johnston ◽  
Adam C. Snyder ◽  
Sanjeev B. Khanna ◽  
Deepa Issar ◽  
Matthew A. Smith

SummaryDecades of research have shown that global brain states such as arousal can be indexed by measuring the properties of the eyes. Neural signals from individual neurons, populations of neurons, and field potentials measured throughout much of the brain have been associated with the size of the pupil, small fixational eye movements, and vigor in saccadic eye movements. However, precisely because the eyes have been associated with modulation of neural activity across the brain, and many different kinds of measurements of the eyes have been made across studies, it has been difficult to clearly isolate how internal states affect the behavior of the eyes, and vice versa. Recent work in our laboratory identified a latent dimension of neural activity in macaque visual cortex on the timescale of minutes to tens of minutes. This ‘slow drift’ was associated with perceptual performance on an orientation-change detection task, as well as neural activity in visual and prefrontal cortex (PFC), suggesting it might reflect a shift in a global brain state. This motivated us to ask if the neural signature of this internal state is correlated with the action of the eyes in different behavioral tasks. We recorded from visual cortex (V4) while monkeys performed a change detection task, and the prefrontal cortex, while they performed a memory-guided saccade task. On both tasks, slow drift was associated with a pattern that is indicative of changes in arousal level over time. When pupil size was large, and the subjects were in a heighted state of arousal, microsaccade rate and reaction time decreased while saccade velocity increased. These results show that the action of the eyes is associated with a dominant mode of neural activity that is pervasive and task-independent, and can be accessed in the population activity of neurons across the cortex.


Author(s):  
R. Oz ◽  
H. Edelman-Klapper ◽  
S. Nivinsky-Margalit ◽  
H. Slovin

AbstractIntra cortical microstimulation (ICMS) in the primary visual cortex (V1) can generate the visual perception of phosphenes and evoke saccades directed to the stimulated location in the retinotopic map. Although ICMS is widely used, little is known about the evoked spatio-temporal patterns of neural activity and their relation to neural responses evoked by visual stimuli or saccade generation. To investigate this, we combined ICMS with Voltage Sensitive Dye Imaging in V1 of behaving monkeys and measured neural activity at high spatial (meso-scale) and temporal resolution. Small visual stimuli and ICMS evoked population activity spreading over few mm that propagated to extrastriate areas. The population responses evoked by ICMS showed faster dynamics and different spatial propagation patterns. Neural activity was higher in trials w/saccades compared with trials w/o saccades. In conclusion, our results uncover the spatio-temporal patterns evoked by ICMS and their relation to visual processing and saccade generation.


2019 ◽  
Author(s):  
Xiaodi Zhang ◽  
Wen-Ju Pan ◽  
Shella Dawn Keilholz

Resting state functional magnetic resonance (rs-fMRI) imaging offers insights into how different brain regions are connected into functional networks. It was recently shown that networks that are almost identical to the ones created from conventional correlation analysis can be obtained from a subset of high-amplitude data, suggesting that the functional networks may be driven by instantaneous co-activations of multiple brain regions rather than ongoing oscillatory processes. The rs-fMRI studies, however, rely on the blood oxygen level dependent (BOLD) signal, which is only indirectly sensitive to neural activity through neurovascular coupling. To provide more direct evidence that the neuronal co-activation events produce the time-varying network patterns seen in rs-fMRI studies, we examined the simultaneous rs-fMRI and local field potential (LFP) recordings in rats performed in our lab over the past several years. We developed complementary analysis methods that focus on either the temporal or spatial domain, and found evidence that the interaction between LFP and BOLD may be driven by instantaneous co-activation events as well. BOLD maps triggered on high-amplitude LFP events resemble co-activation patterns created from rs-fMRI data alone, though the co-activation time points are defined differently in the two cases. Moreover, only LFP events that fall into the highest or lowest thirds of the amplitude distribution result in a BOLD signal that can be distinguished from noise. These findings provide evidence of an electrophysiological basis for the time-varying co-activation patterns observed in previous studies.


2021 ◽  
Vol 13 ◽  
Author(s):  
Varun Chokshi ◽  
Bryce D. Grier ◽  
Andrew Dykman ◽  
Crystal L. Lantz ◽  
Ernst Niebur ◽  
...  

The history of neural activity determines the synaptic plasticity mechanisms employed in the brain. Previous studies report a rapid reduction in the strength of excitatory synapses onto layer 2/3 (L2/3) pyramidal neurons of the primary visual cortex (V1) following two days of dark exposure and subsequent re-exposure to light. The abrupt increase in visually driven activity is predicted to drive homeostatic plasticity, however, the parameters of neural activity that trigger these changes are unknown. To determine this, we first recorded spike trains in vivo from V1 layer 4 (L4) of dark exposed (DE) mice of both sexes that were re-exposed to light through homogeneous or patterned visual stimulation. We found that delivering the spike patterns recorded in vivo to L4 of V1 slices was sufficient to reduce the amplitude of miniature excitatory postsynaptic currents (mEPSCs) of V1 L2/3 neurons in DE mice, but not in slices obtained from normal reared (NR) controls. Unexpectedly, the same stimulation pattern produced an up-regulation of mEPSC amplitudes in V1 L2/3 neurons from mice that received 2 h of light re-exposure (LE). A Poisson spike train exhibiting the same average frequency as the patterns recorded in vivo was equally effective at depressing mEPSC amplitudes in L2/3 neurons in V1 slices prepared from DE mice. Collectively, our results suggest that the history of visual experience modifies the responses of V1 neurons to stimulation and that rapid homeostatic depression of excitatory synapses can be driven by non-patterned input activity.


2020 ◽  
Author(s):  
Michael X Cohen ◽  
Bernhard Englitz ◽  
Arthur S C França

AbstractNeural activity is coordinated across multiple spatial and temporal scales, and these patterns of coordination are implicated in both healthy and impaired cognitive operations. However, empirical cross-scale investigations are relatively infrequent, due to limited data availability and to the difficulty of analyzing rich multivariate datasets. Here we applied frequency-resolved multivariate source-separation analyses to characterize a large-scale dataset comprising spiking and local field potential activity recorded simultaneously in three brain regions (prefrontal cortex, parietal cortex, hippocampus) in freely-moving mice. We identified a constellation of multidimensional, inter-regional networks across a range of frequencies (2-200 Hz). These networks were reproducible within animals across different recording sessions, but varied across different animals, suggesting individual variability in network architecture. The theta band (~4-10 Hz) networks had several prominent features, including roughly equal contribution from all regions and strong inter-network synchronization. Overall, these findings demonstrate a multidimensional landscape of large-scale functional activations of cortical networks operating across multiple spatial, spectral, and temporal scales during open-field exploration.Significance statementNeural activity is synchronized over space, time, and frequency. To characterize the dynamics of large-scale networks spanning multiple brain regions, we recorded data from the prefrontal cortex, parietal cortex, and hippocampus in awake behaving mice, and pooled data from spiking activity and local field potentials into one data matrix. Frequency-specific multivariate decomposition methods revealed a cornucopia of neural networks defined by coherent spatiotemporal patterns over time. These findings reveal a rich, dynamic, and multivariate landscape of large-scale neural activity patterns during foraging behavior.


Sign in / Sign up

Export Citation Format

Share Document