Twitch and Tetanic Properties of Human Thenar Motor Units Paralyzed by Chronic Spinal Cord Injury

2006 ◽  
Vol 96 (1) ◽  
pp. 165-174 ◽  
Author(s):  
C. K. Häger-Ross ◽  
C. S. Klein ◽  
C. K. Thomas

Little is known about how human motor units respond to chronic paralysis. Our aim was to record surface electromyographic (EMG) signals, twitch forces, and tetanic forces from paralyzed motor units in the thenar muscles of individuals ( n = 12) with chronic (1.5–19 yr) cervical spinal cord injury (SCI). Each motor unit was activated by intraneural stimulation of its motor axon using single pulses and trains of pulses at frequencies between 5 and 100 Hz. Paralyzed motor units ( n = 48) had small EMGs and weak tetanic forces ( n = 32 units) but strong twitch forces, resulting in half-maximal force being achieved at a median of only 8 Hz. The distributions for cumulative twitch and tetanic forces also separated less for paralyzed units than for control units, indicating that increases in stimulation frequency made a smaller relative contribution to the total force output in paralyzed muscles. Paralysis also induced slowing of conduction velocities, twitch contraction times and EMG durations. However, the elevated ratios between the twitch and the tetanic forces, but not contractile speed, correlated significantly with the extent to which unit force summated in response to different frequencies of stimulation. Despite changes in the absolute values of many electrical and mechanical properties of paralyzed motor units, most of the distributions shifted uniformly relative to those of thenar units obtained from control subjects. Thus human thenar muscles paralyzed by SCI retain a population of motor units with heterogeneous contractile properties because chronic paralysis influenced all of the motor units similarly.

2017 ◽  
Vol 117 (2) ◽  
pp. 684-691 ◽  
Author(s):  
Christine K. Thomas ◽  
Charlotte K. Häger ◽  
Cliff S. Klein

After human spinal cord injury (SCI), motoneuron recruitment and firing rate during voluntary and involuntary contractions may be altered by changes in motoneuron excitability. Our aim was to compare F waves in single thenar motor units paralyzed by cervical SCI to those in uninjured controls because at the single-unit level F waves primarily reflect the intrinsic properties of the motoneuron and its initial segment. With intraneural motor axon stimulation, F waves were evident in all 4 participants with C4-level SCI, absent in 8 with C5 or C6 injury, and present in 6 of 12 Uninjured participants ( P < 0.001). The percentage of units that generated F waves differed across groups (C4: 30%, C5 or C6: 0%, Uninjured: 16%; P < 0.001). Mean (±SD) proximal axon conduction velocity was slower after C4 SCI [64 ± 4 m/s ( n = 6 units), Uninjured: 73 ± 8 m/s ( n = 7 units); P = 0.037]. Mean distal axon conduction velocity differed by group [C4: 40 ± 8 m/s ( n = 20 units), C5 or C6: 49 ± 9 m/s ( n = 28), Uninjured: 60 ± 7 m/s ( n = 45); P < 0.001]. Motor unit properties (EMG amplitude, twitch force) only differed after SCI ( P ≤ 0.004), not by injury level. Motor units with F waves had distal conduction velocities, M-wave amplitudes, and twitch forces that spanned the respective group range, indicating that units with heterogeneous properties produced F waves. Recording unitary F waves has shown that thenar motoneurons closer to the SCI (C5 or C6) have reduced excitability whereas those further away (C4) have increased excitability, which may exacerbate muscle spasms. This difference in motoneuron excitability may be related to the extent of membrane depolarization following SCI. NEW & NOTEWORTHY Unitary F waves were common in paralyzed thenar muscles of people who had a chronic spinal cord injury (SCI) at the C4 level compared with uninjured people, but F waves did not occur in people that had SCI at the C5 or C6 level. These results highlight that intrinsic motoneuron excitability depends, in part, on how close the motoneurons are to the site of the spinal injury, which could alter the generation and strength of voluntary and involuntary muscle contractions.


Brain ◽  
2009 ◽  
Vol 133 (1) ◽  
pp. 117-125 ◽  
Author(s):  
C. K. Thomas ◽  
C. K. Hager-Ross ◽  
C. S. Klein

2003 ◽  
Vol 89 (4) ◽  
pp. 2065-2071 ◽  
Author(s):  
Inge Zijdewind ◽  
Christine K. Thomas

Spinal cord injury may change both the distribution and the strength of the synaptic input within a motoneuron pool and therefore alter force gradation. Here, we have studied the relative contributions of motor unit recruitment and rate modulation to force gradation during voluntary contractions of thenar muscles performed by five individuals with chronic (>1 yr) cervical spinal cord injury. Mean ± SD thenar unit firing rates were low during both steady-level 25% (8.3 ± 2.2 Hz, n = 27 units) and 100% maximal voluntary contractions (MVCs, 9.2 ± 3.1 Hz, n = 23 units). Thus modest rate modulation, or a lack of it in some units, was seen despite an average fourfold increase in integrated surface electromyographic activity and force. During ramp contractions, units were recruited at 5.7 ± 2.5 Hz, but still only reached maximal firing rates of 12.8 ± 4.9 Hz. Motor units were recruited up to 85% of the maximal force achieved (14.6 ± 5.6 N). In contrast, unit recruitment in control hand muscles is largely complete by 30% MVC. Thus, during voluntary contractions of thenar muscles weakened by cervical spinal cord injury, motor unit rate modulation was limited and recruitment occurred over a wider than usual force range. Those motor units that were stopped voluntarily had significantly lower derecruitment versus recruitment thresholds. However, 8 units (24%) continued to fire long after the signal to end the voluntary contraction at a mean frequency of 5.9 ± 0.8 Hz. The forces generated by this prolonged unit activity ranged from 0.3 to 7.2% maximum. Subjects were unable to stop this involuntary unit activity even with the help of feedback. The mechanisms that underlie this prolonged motor unit firing need to be explored further.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael D. Sunshine ◽  
Antonino M. Cassarà ◽  
Esra Neufeld ◽  
Nir Grossman ◽  
Thomas H. Mareci ◽  
...  

AbstractRespiratory insufficiency is a leading cause of death due to drug overdose or neuromuscular disease. We hypothesized that a stimulation paradigm using temporal interference (TI) could restore breathing in such conditions. Following opioid overdose in rats, two high frequency (5000 Hz and 5001 Hz), low amplitude waveforms delivered via intramuscular wires in the neck immediately activated the diaphragm and restored ventilation in phase with waveform offset (1 Hz or 60 breaths/min). Following cervical spinal cord injury (SCI), TI stimulation via dorsally placed epidural electrodes uni- or bilaterally activated the diaphragm depending on current and electrode position. In silico modeling indicated that an interferential signal in the ventral spinal cord predicted the evoked response (left versus right diaphragm) and current-ratio-based steering. We conclude that TI stimulation can activate spinal motor neurons after SCI and prevent fatal apnea during drug overdose by restoring ventilation with minimally invasive electrodes.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1057
Author(s):  
Riccardo Bravi ◽  
Stefano Caputo ◽  
Sara Jayousi ◽  
Alessio Martinelli ◽  
Lorenzo Biotti ◽  
...  

Residual motion of upper limbs in individuals who experienced cervical spinal cord injury (CSCI) is vital to achieve functional independence. Several interventions were developed to restore shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements are operator-dependent and require significant time and effort. Therefore, innovative technology for supporting medical personnel in objectively and reliably measuring the efficacy of treatments for shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of a customized wireless wearable sensors (Inertial Measurement Units—IMUs) system for shoulder ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls performed four shoulder movements (forward flexion, abduction, and internal and external rotation) with dominant arm. Every movement was evaluated with a goniometer by different testers and with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results provide essential information on the accuracy of the proposed wireless wearable sensors system in acquiring objective measurements of the shoulder movements in CSCI patients.


Sign in / Sign up

Export Citation Format

Share Document