Reduction of Zolpidem Sensitivity in a Freeze Lesion Model of Neocortical Dysgenesis

1999 ◽  
Vol 81 (1) ◽  
pp. 404-407 ◽  
Author(s):  
R. Anthony Defazio ◽  
John J. Hablitz

DeFazio, R. Anthony and John J. Hablitz. Reduction of zolpidem sensitivity in a freeze lesion model of neocortical dysgenesis. J. Neurophysiol. 81: 404–407, 1999. Early postnatal freeze lesions in rat neocortex produce anatomic abnormalities resembling those observed in human patients with seizure disorders. Although in vitro brain slices containing the lesion are hyperexcitable, the mechanisms of this alteration have yet to be elucidated. To test the hypothesis that changes in postsynaptic inhibitory receptors may underlie this hyperexcitability, we examined properties of γ-aminobutyric acid type A receptor (GABAAR)–mediated miniature inhibitory postsynaptic currents (mIPSCs). Recordings were obtained in layer II/III pyramidal cells located 1–2 mm lateral to the lesion. mIPSC peak amplitude and rate of rise were increased relative to nonlesioned animals, whereas decay time constant and interevent interval were unaltered. Bath application of zolpidem at a concentration (20 nM) specific for activation of the type 1 benzodiazepine receptor had no significant effect on decay time constant in six of nine cells. Exposure to higher concentrations (100 nM) enhanced the decay time constant of all cells tested ( n = 7). Because mIPSCs from unlesioned animals were sensitive to both concentrations of zolpidem, these results suggest that freeze lesions may decrease the affinity of pyramidal cell GABAARs for zolpidem. This could be mediated via a change in α-subunit composition of the GABAAR, which eliminates the type 1 benzodiazepine receptor.

1998 ◽  
Vol 80 (4) ◽  
pp. 1670-1677 ◽  
Author(s):  
Tony Defazio ◽  
John J. Hablitz

DeFazio, Tony and John J. Hablitz. Zinc and zolpidem modulate mIPSCs in rat neocortical pyramidal neurons. J. Neurophysiol. 80: 1670–1677, 1998. Pharmacological modulation of γ-aminobutyric acid-A (GABAA) receptors can provide important information on the types of subunits composing these receptors. In recombinant studies, zinc more potently inhibits αβ subunits compared with the αβγ combination, whereas modulation by nanomolar concentrations of the benzodiazepine type 1-selective agonist zolpidem is conferred by the α1βγ2 subunit combination. We examined four properties of miniature inhibitory postsynaptic currents (mIPSCs) from identified necortical pyramidal cells in rat brain slices: decay time constant, peak amplitude, rate of rise, and interevent interval. Exposure to 50 μM zinc reduced the decay time constant, peak amplitude, and rate of rise with no effect on interevent interval. Zolpidem enhanced mIPSCs in a concentration-dependent manner. Both 20 and 100 nM zolpidem increased the decay time constants of mIPSCs. In some cells, both peak amplitude and rate of rise were also enhanced. All cells treated with zinc were also responsive to zolpidem. These results show that neocortical pyramidal cells have a population of GABAA receptors sensitive to both zinc and zolpidem.


2001 ◽  
Vol 85 (5) ◽  
pp. 2063-2069 ◽  
Author(s):  
Kerstin Stenkamp ◽  
J. Matias Palva ◽  
Marylka Uusisaari ◽  
Sebastian Schuchmann ◽  
Dietmar Schmitz ◽  
...  

The decrease in brain CO2 partial pressure (pCO2) that takes place both during voluntary and during pathological hyperventilation is known to induce gross alterations in cortical functions that lead to subjective sensations and altered states of consciousness. The mechanisms that mediate the effects of the decrease in pCO2 at the neuronal network level are largely unexplored. In the present work, the modulation of gamma oscillations by hypocapnia was studied in rat hippocampal slices. Field potential oscillations were induced by the cholinergic agonist carbachol under an N-methyl-D-aspartate (NMDA)-receptor blockade and were recorded in the dendritic layer of the CA3 region with parallel measurements of changes in interstitial and intraneuronal pH (pHo and pHi, respectively). Hypocapnia from 5 to 1% CO2 led to a stable monophasic increase of 0.5 and 0.2 units in pHo and pHi, respectively. The mean oscillation frequency increased slightly but significantly from 32 to 34 Hz and the mean gamma-band amplitude (20 to 80 Hz) decreased by 20%. Hypocapnia induced a dramatic enhancement of the temporal stability of the oscillations, as was indicated by a two-fold increase in the exponential decay time constant fitted to the autocorrelogram. A rise in pHi evoked by the weak base trimethylamine (TriMA) was associated with a slight increase in oscillation frequency (37 to 39 Hz) and a decrease in amplitude (30%). Temporal stability, on the other hand, was decreased by TriMA, which suggests that its enhancement in 1% CO2 was related to the rise in pHo. In 1% CO2, the decay-time constant of the evoked monosynaptic pyramidal inhibitory postsynaptic current (IPSC) was unaltered but its amplitude was enhanced. This increase in IPSC amplitude seems to significantly contribute to the enhancement of temporal stability because the enhancement was almost fully reversed by a low concentration of bicuculline. These results suggest that changes in brain pCO2 can have a strong influence on the temporal modulation of gamma rhythms.


2003 ◽  
Vol 89 (4) ◽  
pp. 1929-1940 ◽  
Author(s):  
Fu-Chun Hsu ◽  
Robert Waldeck ◽  
Donald S. Faber ◽  
Sheryl S. Smith

We have previously reported that short-term (48–72 h) exposure to the GABA-modulatory steroid 3α-OH-5α-pregnan-20-one (3α,5α-THP) increases expression of the α4 subunit of the GABAA receptor (GABAR) in the hippocampus of adult rats. This change in subunit composition was accompanied by altered pharmacology and an increase in general excitability associated with acceleration of the decay time constant (τ) for GABA-gated current of pyramidal cells acutely isolated from CA1 hippocampus similar to what we have reported following withdrawal from the steroid after chronic long-term administration. Because GABAR can be localized to either synaptic or extrasynaptic sites, we tested the hypothesis that this change in receptor kinetics is mediated by synaptic GABAR. To this end, we evaluated the decay kinetics of TTX-resistant miniature inhibitory postsynaptic currents (mIPSCs) recorded from CA1 pyramidal cells in hippocampal slices following 48-h treatment with 3α,5α/β-THP (10 mg/kg, ip). Hormone treatment produced a marked acceleration in the fast decay time constant (τfast) of GABAergic mIPSCs. This effect was prevented by suppression of α4-subunit expression with antisense (AS) oligonucleotide, suggesting that hormone treatment increases α4-containing GABAR subsynaptically. This conclusion was further supported by pharmacological data from 3α,5β-THP-treated animals, demonstrating a bimodal distribution of τs for individual mIPSCs following bath application of the α4-selective benzodiazepine RO15–4513, with a shift to slower values. Because 40–50% of the individual τs were also shifted to slower values following bath application of the non–α4-selective benzodiazepine agonist lorazepam (LZM), we suggest that the number of GABAR synapses containing α4 subunits is equivalent to those that do not following 48-h administration of 3α,5β-THP. The decrease in GABAR-mediated charge transfer resulting from accelerated current decay may then result in increased excitability of the hippocampal circuitry, an effect consistent with the increased behavioral excitability we have previously demonstrated.


1996 ◽  
Vol 76 (6) ◽  
pp. 3983-3993 ◽  
Author(s):  
A. Draguhn ◽  
U. Heinemann

1. Monosynaptic inhibitory postsynaptic currents (IPSCs) were recorded from early postnatal and juvenile dentate granule cells in rat brain slices at room temperature. The focally evoked currents were mediated by gamma-aminobutyric acid-A (GABAA) receptors. 2. IPSCs were characterized by a steep rising phase and a slower, monoexponential decay time course. The decay time constant was potential dependent and average values ranged from 33 ms at a holding potential of -60 mV to 58 ms at a holding potential of +40 mV. 3. IPSCs were studied in tissue from animals between postnatal day (p) 3 and p25. All kinetic parameters as well as the mean current amplitude were unchanged during this ontogenetic period. 4. In juvenile granule cells from animals aged 13–16 days, addition of the GABA uptake blocker (R)-N-[4,4-bis (3-methyl-2-thienyl) but-3-en1-yl] nipecotic acid (tiagabine) (10 microM) prolonged the decaying phase of the IPSCs. The current decay remained monoexponential but the time constant increased to 250% of control values. Mean current amplitudes remained largely unchanged. 5. In contrast, tiagabine had no effect on IPSCs in early postnatal tissue. The decay time constant remained unchanged in cells recorded from animals aged p4-p6. Other uptake blockers were also ineffective during the first postnatal week, whereas beta-alanine, NNC-711, and L-2,3-diaminoproprionic acid enhanced the decay time constant in the older tissue (p13-p16). 6. Hypoosmolaric extracellular solution was applied to restrict the extracellular space. In juvenile tissue (p13-p16), IPSCs were not affected by this treatment, whereas early postnatal granule cells (p4-p6) displayed clearly prolonged IPSC decay time constants (165% of control). 7. We conclude that the mechanism governing the kinetics of evoked IPSCs in granule cells changes during ontogenesis. Whereas in early postnatal tissue the transmitter leaves the postsynaptic site by diffusion, GABA uptake becomes time limiting after 2 wk of postnatal development.


2020 ◽  
Vol 13 (5) ◽  
pp. 80
Author(s):  
Dmitry V. Amakhin ◽  
Ilya V. Smolensky ◽  
Elena B. Soboleva ◽  
Aleksey V. Zaitsev

Many β-lactam antibiotics, including cephalosporins, may cause neurotoxic and proconvulsant effects. The main molecular mechanism of such effects is considered to be γ-aminobutyric acid type a (GABAa) receptor blockade, leading to the suppression of GABAergic inhibition and subsequent overexcitation. We found that cefepime (CFP), a cephalosporin, has a pronounced antiepileptic effect in the pentylenetetrazole (PTZ)-induced seizure model by decreasing the duration and severity of the seizure and animal mortality. This effect was specific to the PTZ model. In line with findings of previous studies, CFP exhibited a proconvulsant effect in other models, including the maximal electroshock model and 4-aminopyridine model of epileptiform activity, in vitro. To determine the antiepileptic mechanism of CFP in the PTZ model, we used whole-cell patch-clamp recordings. We demonstrated that CFP or PTZ decreased the amplitude of GABAa receptor-mediated postsynaptic currents. PTZ also decreased the current decay time constant and temporal summation of synaptic responses. In contrast, CFP slightly increased the decay time constant and did not affect summation. When applied together, CFP prevented alterations to the summation of responses by PTZ, strongly reducing the effects of PTZ on repetitive inhibitory synaptic transmission. The latter may explain the antiepileptic effect of CFP in the PTZ model.


1997 ◽  
Vol 77 (5) ◽  
pp. 2416-2426 ◽  
Author(s):  
Fu-Ming Zhou ◽  
John J. Hablitz

Zhou, Fu-Ming and John J. Hablitz. Rapid kinetics and inward rectification of miniature EPSCs in layer I neurons of rat neocortex. J. Neurophysiol. 77: 2416–2426, 1997. With the use of the whole cell patch-clamp technique combined with visualization of neurons in brain slices, we studied the properties of miniature excitatory postsynaptic currents (mEPSCs) in rat neocortical layer I neurons. At holding potentials (−50 to −70 mV) near the resting membrane potential (RMP), mEPSCs had amplitudes of 5–100 pA and were mediated mostly by α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptors. Amplitude histograms were skewed toward large events. An N-methyl-d-aspartate (NMDA) component was revealed by depolarization to −30 mV or by the use of a Mg2+-free bathing solution. At RMP, averaged AMPA mEPSCs had a 10–90% rise time of ∼0.3 ms (uncorrected for instrument filtering). The decay of averaged mEPSCs was best fit by double-exponential functions in most cases. The fast, dominating component had a decay time constant of ∼1.2 ms and comprised ∼80% of the total amplitude. A small slow component had a decay time constant of ∼4 ms. Positive correlations were found between rise and decay times of both individual and averaged mEPSCs, indicative of dendritic filtering. Some large-amplitude mEPSCs and spontaneous EPSCs (recorded in the absence of tetrodotoxin) had slower kinetics, suggesting a role of asynchronous transmitter release in shaping EPSCs. The amplitudes of mEPSCs were much smaller at +60 mV than at −60 mV, indicating that synaptic AMPA-receptor-mediated currents were inwardly rectifying. These results suggest that neocortical layer I neurons receive both NMDA- and AMPA-receptor-mediated synaptic inputs. The rapid decay of EPSCs appears to be largely determined by AMPA receptor deactivation. The observed rectification of synaptic responses suggests that synaptic AMPA receptors in layer I neurons may lack GluR-2 subunits and may be Ca2+ permeable.


2021 ◽  
Vol 1857 (1) ◽  
pp. 012013
Author(s):  
S Imagawa ◽  
H Kajitani ◽  
T Obana ◽  
S Takada ◽  
S Hamaguchi ◽  
...  

1997 ◽  
Vol 78 (4) ◽  
pp. 1826-1836 ◽  
Author(s):  
Deise Lima da Costa ◽  
Anne Chibois ◽  
Jean-Paul Erre ◽  
Christophe Blanchet ◽  
RENAUD CHARLET de Sauvage ◽  
...  

Lima da Costa, Deise, Anne Chibois, Jean-Paul Erre, Christophe Blanchet, Renaud Charlet de Sauvage, and Jean-Marie Aran. Fast, slow, and steady-state effects of contralateral acoustic activation of the medial olivocochlear efferent system in awake guinea pigs: action of gentamicin. J. Neurophysiol. 78: 1826–1836, 1997. The function of the medial olivocochlear efferent system was observed in awake guinea pigs by recording, in the absence of ipsilateral external acoustic stimulation, the ensemble background activity (EBA) of the VIIIth nerve from an electrode chronically implanted on the round window of one ear. The EBA was measured by calculating the power value of the round window signal in the 0.5- to 2.5-kHz band after digital or analog (active) filtering. This EBA was compared with and without the addition of a low-level broadband noise to the opposite ear. The contralateral broadband noise (CLBN, 55 dB SPL) induced, via the efferent system, a decrease (suppression) of this EBA. With the use of noise bursts of different durations, two components in this suppression could be observed. After the onset of a 1-s CLBN, the power value of the EBA decreased rapidly by 38.0 ± 4.2% (mean ± SD, n = 3), with a latency of <10 ms and a decay time constant of 13.1 ± 1.0 ms (fast effect). At the offset of the 1-s CLBN, EBA came back to prestimulation values with a similar latency and a time constant of 15.5 ± 2.9 ms. During longer CLBN stimulation (≥1 min), EBA presented, after the fast decrease, an additional, slower decrease of 15.6 ± 3.1%, with a delay of 9.8 ± 1.3 s and a decay time constant of 16.1 ± 5.0 s ( n = 12, slow effect), and then remained remarkably constant for as long as observed, i.e., >2 h (steady state). The average global suppression was thus up to 47.8 ± 5.8% of the basal, pre-CLBN-stimulation EBA value. At the offset of the CLBN, EBA returned to pre-CLBN level with fast and slow phases, with, for the slow phase, no delay and a time constant of 32.1 ± 8.1 s. Fast and slow changes in EBA power values were observed after a single injection of gentamicin (GM) at different doses (150, 200, and 250 mg/kg). At 150 and 200 mg/kg, GM progressively and reversibly blocked the rapid effect, but the slow component of the efferent medial suppression remained remarkably unchanged. However, at higher doses both the fast and slow suppressions were totally yet still reversibly blocked. These observations indicate that the medial olivocochlear efferent system exerts sustained influences on outer hair cells and that this effect develops in two different steps that may have different basic cellular mechanisms.


1996 ◽  
Vol 76 (1) ◽  
pp. 448-460 ◽  
Author(s):  
C. A. Lewis ◽  
D. S. Faber

1. To identify the type(s) and properties of inhibitory postsynaptic receptor(s) involved in synaptic transmission in cultured rat embryonic spinal cord and medullary neurons, we have used whole cell patch-clamp techniques to record miniature inhibitory postsynaptic currents (mIPSCs) in the presence of tetrodotoxin, DL-2-amino-5-phosphonovaleric acid, and 6-cyano-7-nitroquinoxaline-2,3-dione. 2. The mIPSCs recorded from both spinal cord and medullary neurons had skewed amplitude distributions. 3. The glycinergic antagonist strychnine and the GABAergic antagonist bicuculline each decreased both the frequency and mean peak amplitudes of mIPSCs. We conclude that both glycine and gamma-aminobutyric acid (GABA) are neurotransmitters at inhibitory synapses in our cultured cells. 4. Most (approximately 96-97%) mIPSCs decay with single-exponential time constants, and decay time distributions were consistently best fitted by the sum of four Gaussians with decay constants as follows: D1 = 5.8 +/- 0.1 (SE) ms (n = 63), D2 = 12.2 +/- 0.2 ms (n = 61), D3 = 23.2 +/- 0.4 ms (n = 54), and D4 = 44.7 +/- 1.0 ms (n = 57). We conclude that the four classes of decay times represent kinetically different inhibitory postsynaptic receptor populations. 5. Strychnine and bicuculline usually had one of two different effects on the mIPSC decay time constant distributions; either selective decreases in the frequency of mIPSCs with decay times in certain classes (i.e., the D1 class was reduced by bicuculline, the D2 class by strychnine, and the D3 and D4 classes by both antagonists) or a nonselective depression in the frequency of mIPSCs with decay times in all four classes. The particular effect observed in a given neuron was correlated with the presence or absence of ATP and guanosine 5'-triphosphate (GTP) in the patch pipette. Namely, in 71% of the antagonist applications where the pipette contained ATP and GTP, the result was a nonselective decrease in mIPSCs in all decay time constant classes. Conversely, in 54% of the antagonist applications in their absence, the result was a selective decrease in the frequency of mIPSCs in specific decay time constant classes. 6. In some experiments, mIPSCs reappeared in antagonist solution after an essentially complete block. Recovery from block in the continued presence of antagonist was never observed in the absence of ATP and GTP (8 neurons), and, at the same time, 5 of 9 neurons patched with ATP and GTP in the pipette did show recovery (56%).


1992 ◽  
Vol 67 (6) ◽  
pp. 1698-1701 ◽  
Author(s):  
S. M. Thompson ◽  
B. H. Gahwiler

1. The effects of the gamma-aminobutyric acid (GABA) uptake blocker tiagabine on inhibitory synaptic potentials (IPSPs) were examined with microelectrode and whole-cell recording from CA3 pyramidal cells in rat hippocampal slice cultures. 2. Tiagabine (10-25 microM) greatly prolonged the duration of monosynaptic IPSPs elicited in the presence of excitatory amino acid antagonists but had no effect on their amplitude. Part of the prolonged time course resulted from a GABAB receptor-mediated component that was not detectable under control conditions. 3. The mean decay time constant of the underlying GABAA receptor-mediated synaptic current was increased from 16 to 250 ms. Spontaneous miniature IPSPs recorded with whole-cell clamp were unaffected by tiagabine. Pentobarbital sodium, in contrast, increased the decay time constant of both evoked and spontaneous GABAA-mediated currents. 4. Tiagabine (25 microM) inhibited spontaneous and evoked epileptiform bursting induced by increasing the extracellular potassium concentration to 8 mM. 5. We conclude that GABA uptake plays a significant role in determining the time course of evoked IPSPs and also limits the likelihood that GABAB receptors are activated.


Sign in / Sign up

Export Citation Format

Share Document