Visual Influences on the Development and Recovery of the Vestibuloocular Reflex in the Chicken

2001 ◽  
Vol 85 (3) ◽  
pp. 1119-1128 ◽  
Author(s):  
Christopher T. Goode ◽  
Donna L. Maney ◽  
Edwin W Rubel ◽  
Albert F. Fuchs

Whenever the head turns, the vestibuloocular reflex (VOR) produces compensatory eye movements to help stabilize the image of the visual world on the retina. Uncompensated slip of the visual world across the retina results in a gradual change in VOR gain to minimize the image motion. VOR gain changes naturally during normal development and during recovery from neuronal damage. We ask here whether visual slip is necessary for the development of the chicken VOR (as in other species) and whether it is required for the recovery of the VOR after hair cell loss and regeneration. In the first experiment, chickens were reared under stroboscopic illumination, which eliminated visual slip. The horizontal and vertical VORs (h- and vVORs) were measured at different ages and compared with those of chickens reared in normal light. Strobe-rearing prevented the normal development of both h- and vVORs. After 8 wk of strobe-rearing, 3 days of exposure to normal light caused the VORs to recover partially but not to normal values. In the second experiment, 1-wk-old chicks were treated with streptomycin, which destroys most vestibular hair cells and reduces hVOR gain to zero. In birds, vestibular hair cells regenerate so that after 8 wk in normal illumination they appear normal and hVOR gain returns to values that are normal for birds of that age. The treated birds in this study recovered in either normal or stroboscopic illumination. Their hVOR and vVOR and vestibulocollic reflexes (VCR) were measured and compared with those of untreated, age-matched controls at 8 wk posthatch, when hair cell regeneration is known to be complete. As in previous studies, the gain of the VOR decreased immediately to zero after streptomycin treatment. After 8 wk of recovery under normal light, the hVOR was normal, but vVOR gain was less than normal. After 8 wk of recovery under stroboscopic illumination, hVOR gain was less than normal at all frequencies. VCR recovery was not affected by the strobe environment. When streptomycin-treated, strobe-recovered birds were then placed in normal light for 2 days, hVOR gain returned to normal. Taken together, the results of these experiments suggest that continuous visual feedback can adjust VOR gain. In the absence of appropriate visual stimuli, however, there is a default VOR gain and phase to which birds recover or revert, regardless of age. Thus an 8-wk-old chicken raised in a strobe environment from hatch would have the same gain as a streptomycin-treated chicken that recovers in a strobe environment.

Author(s):  
Xiao Lin ◽  
Michael G. K. Brunk ◽  
Pingan Yuanxiang ◽  
Andrew W. Curran ◽  
Enqi Zhang ◽  
...  

AbstractHearing deficits impact on the communication with the external world and severely compromise perception of the surrounding. Deafness can be caused by particular mutations in the neuroplastin (Nptn) gene, which encodes a transmembrane recognition molecule of the immunoglobulin (Ig) superfamily and plasma membrane Calcium ATPase (PMCA) accessory subunit. This study investigates whether the complete absence of neuroplastin or the loss of neuroplastin in the adult after normal development lead to hearing impairment in mice analyzed by behavioral, electrophysiological, and in vivo imaging measurements. Auditory brainstem recordings from adult neuroplastin-deficient mice (Nptn−/−) show that these mice are deaf. With age, hair cells and spiral ganglion cells degenerate in Nptn−/− mice. Adult Nptn−/− mice fail to behaviorally respond to white noise and show reduced baseline blood flow in the auditory cortex (AC) as revealed by single-photon emission computed tomography (SPECT). In adult Nptn−/− mice, tone-evoked cortical activity was not detectable within the primary auditory field (A1) of the AC, although we observed non-persistent tone-like evoked activities in electrophysiological recordings of some young Nptn−/− mice. Conditional ablation of neuroplastin in Nptnlox/loxEmx1Cre mice reveals that behavioral responses to simple tones or white noise do not require neuroplastin expression by central glutamatergic neurons. Loss of neuroplastin from hair cells in adult NptnΔlox/loxPrCreERT mice after normal development is correlated with increased hearing thresholds and only high prepulse intensities result in effective prepulse inhibition (PPI) of the startle response. Furthermore, we show that neuroplastin is required for the expression of PMCA 2 in outer hair cells. This suggests that altered Ca2+ homeostasis underlies the observed hearing impairments and leads to hair cell degeneration. Our results underline the importance of neuroplastin for the development and the maintenance of the auditory system.


2000 ◽  
Vol 109 (5_suppl) ◽  
pp. 20-25 ◽  
Author(s):  
Kojiro Tsuji ◽  
Steven D. Rauch ◽  
Conrad Wall ◽  
Luis Velázquez-Villaseñor ◽  
Robert J. Glynn ◽  
...  

Quantitative assessments of vestibular hair cells and Scarpa's ganglion cells were performed on 17 temporal bones from 10 individuals who had well-documented clinical evidence of aminoglycoside ototoxicity (streptomycin, kanamycin, and neomycin). Assessment of vestibular hair cells was performed by Nomarski (differential interference contrast) microscopy. Hair cell counts were expressed as densities (number of cells per 0.01 mm2 surface area of the sensory epithelium). The results were compared with age-matched normal data. Streptomycin caused a significant loss of both type I and type II hair cells in all 5 vestibular sense organs. In comparing the ototoxic effect on type I versus type II hair cells, there was greater type I hair cell loss for all 3 cristae, but not for the maculae. The vestibular ototoxic effects of kanamycin appeared to be similar to those of streptomycin, but the small sample size precluded definitive conclusions from being made. Neomycin did not cause loss of vestibular hair cells. Within the limits of this study (maximum postototoxicity survival time of 12 months), there was no significant loss of Scarpa's ganglion cells for any of the 3 drugs. The findings have implications in several clinical areas, including the correlation of vestibular test results to pathological findings, the rehabilitation of patients with vestibular ototoxicity, the use of aminoglycosides to treat Meniere's disease, and the development of a vestibular prosthesis.


1999 ◽  
Vol 81 (3) ◽  
pp. 1025-1035 ◽  
Author(s):  
Christopher T. Goode ◽  
John P. Carey ◽  
Albert F. Fuchs ◽  
Edwin W Rubel

Recovery of the vestibulocolic reflex after aminoglycoside ototoxicity in domestic chickens. Avian auditory and vestibular hair cells regenerate after damage by ototoxic drugs, but until recently there was little evidence that regenerated vestibular hair cells function normally. In an earlier study we showed that the vestibuloocular reflex (VOR) is eliminated with aminoglycoside antibiotic treatment and recovers as hair cells regenerate. The VOR, which stabilizes the eye in the head, is an open-loop system that is thought to depend largely on regularly firing afferents. Recovery of the VOR is highly correlated with the regeneration of type I hair cells. In contrast, the vestibulocolic reflex (VCR), which stabilizes the head in space, is a closed-loop, negative-feedback system that seems to depend more on irregularly firing afferent input and is thought to be subserved by different circuitry than the VOR. We examined whether this different reflex also of vestibular origin would show similar recovery after hair cell regeneration. Lesions of the vestibular hair cells of 10-day-old chicks were created by a 5-day course of streptomycin sulfate. One day after completion of streptomycin treatment there was no measurable VCR gain, and total hair cell density was ∼35% of that in untreated, age-matched controls. At 2 wk postlesion there was significant recovery of the VCR; at this time two subjects showed VCR gains within the range of control chicks. At 3 wk postlesion all subjects showed VCR gains and phase shifts within the normal range. These data show that the VCR recovers before the VOR. Unlike VOR gain, recovering VCR gain correlates equally well with the density of regenerating type I and type II vestibular hair cells, except at high frequencies. Several factors other than hair cell regeneration, such as length of stereocilia, reafferentation of hair cells, and compensation involving central neural pathways, may be involved in behavioral recovery. Our data suggest that one or more of these factors differentially affect the recovery of these two vestibular reflexes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Michael R. Deans

Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.


2008 ◽  
Vol 99 (2) ◽  
pp. 718-733 ◽  
Author(s):  
A. Li ◽  
J. Xue ◽  
E. H. Peterson

Hair bundles are critical to mechanotransduction by vestibular hair cells, but quantitative data are lacking on vestibular bundles in mice or other mammals. Here we quantify bundle heights and their variation with macular locus and hair cell type in adult mouse utricular macula. We also determined that macular organization differs from previous reports. The utricle has ∼3,600 hair cells, half on each side of the line of polarity reversal (LPR). A band of low hair cell density corresponds to a band of calretinin-positive calyces, i.e., the striola. The relation between the LPR and the striola differs from previous reports in two ways. First, the LPR lies lateral to the striola instead of bisecting it. Second, the LPR follows the striolar trajectory anteriorly, but posteriorly it veers from the edge of the striola to reach the posterior margin of the macula. Consequently, more utricular bundles are oriented mediolaterally than previously supposed. Three hair cell classes are distinguished in calretinin-stained material: type II hair cells, type ID hair cells contacting calretinin-negative (dimorphic) afferents, and type IC hair cells contacting calretinin-positive (calyceal) afferents. They differ significantly on most bundle measures. Type II bundles have short stereocilia. Type IC bundles have kinocilia and stereocilia of similar heights, i.e., KS ratios (ratio of kinocilium to stereocilia heights) ∼1, unlike other receptor classes. In contrast to these class-specific differences, bundles show little regional variation except that KS ratios are lowest in the striola. These low KS ratios suggest that bundle stiffness is greater in the striola than in the extrastriola.


1997 ◽  
Vol 273 (6) ◽  
pp. C1972-C1980 ◽  
Author(s):  
K. J. Rennie ◽  
J. F. Ashmore ◽  
M. J. Correia

In amniotes, there are two types of hair cells, designated I and II, that differ in their morphology, innervation pattern, and ionic membrane properties. Type I cells are unique among hair cells in that their basolateral surfaces are almost completely enclosed by an afferent calyceal nerve terminal. Recently, several lines of evidence have ascribed a motile function to type I hair cells. To investigate this, elevated external K+, which had been used previously to induce hair cell shortening, was used to induce shape changes in dissociated mammalian type I vestibular hair cells. Morphologically identified type I cells shortened and widened when the external K+ concentration was raised isotonically from 2 to 125 mM. The shortening did not require external Ca2+ but was abolished when external Cl− was replaced with gluconate or sulfate and when external Na+ was replaced with N-methyl-d-glucamine. Bumetanide (10–100 μM), a specific blocker of the Na+-K+-Cl− cotransporter, significantly reduced K+-induced shortening. Hyposmotic solution resulted in type I cell shape changes similar to those seen with high K+, i.e., shortening and widening. Type I cells became more spherical in hyposmotic solution, presumably as a result of a volume increase due to water influx. In hypertonic solution, cells became narrower and increased in length. These results suggest that shape changes in type I hair cells induced by high K+ are due, at least in part, to ion and solute entry via an Na+-K+-Cl− cotransporter, which results in cell swelling. A scheme is proposed whereby the type I hair cell depolarizes and K+ leaves the cell via voltage-dependent K+channels and accumulates in the synaptic space between the type I hair cell and calyx. Excess K+ could then be removed from the intercellular space by uptake via the cotransporter.


1996 ◽  
Vol 76 (5) ◽  
pp. 3301-3312 ◽  
Author(s):  
J. P. Carey ◽  
A. F. Fuchs ◽  
E. W. Rubel

1. Although auditory and vestibular hair cells are known to regenerate after aminoglycoside intoxication in birds, there is only sparse evidence that the regenerated hair cells are functional. To address this issue, we examined the relation of hair cell regeneration to recovery of the vestibuloocular reflex (VOR), whose afferent signal originates at hair cells in the vestibular epithelium. Hair cell damage was produced by treating white Leghorn chicks (Gallus domesticus, 4–8 days posthatch) with streptomycin sulfate in normal saline (1,200 mg.kg-1.day-1 im) for 5 days. 2. In the 1st wk after treatment, the VOR gain was essentially 0, and hair cell density as assessed by light microscopy was approximately 40% of normal. Between the 1st and 3rd wk after treatment, the VOR was present. Although VOR gain varied considerably from one chick to another, it increased, on average, between the 1st and 3rd wk, as did the average hair cell density. At the end of 8–9 wk, the gain and phase of the VOR had returned to normal values, as had the average density of hair cells. 3. Therefore, despite the catastrophic initial effect of hair cell loss on the VOR, recovered hair cells appeared to restore the VOR completely. Average hair cell density increased with average VOR gain. VOR gain correlated better with recovery of type 1 hair cells than with recovery of type II hair cells. 4. In contrast to hair cell density, the appearance of the vestibular epithelia as assessed by hair cell stereocilia in scanning electron micrographs was a poor indicator of VOR gain. In both treated and control birds, epithelia with the same appearance could have quite different VOR gains, suggesting a variation in the functional viability of the hair cells. 5. This observation suggests that several factors, such as the repair of stereocilia, the efficacy of hair cell synapses on afferent fibers, and the extent of compensation by central vestibular pathways, may affect the recovery of VOR gain. However, our data suggest that hair cell regeneration plays an important role in this recovery.


Development ◽  
2020 ◽  
Vol 147 (17) ◽  
pp. dev186015 ◽  
Author(s):  
Maggie S. Matern ◽  
Beatrice Milon ◽  
Erika L. Lipford ◽  
Mark McMurray ◽  
Yoko Ogawa ◽  
...  

ABSTRACTDespite the known importance of the transcription factors ATOH1, POU4F3 and GFI1 in hair cell development and regeneration, their downstream transcriptional cascades in the inner ear remain largely unknown. Here, we have used Gfi1cre;RiboTag mice to evaluate changes to the hair cell translatome in the absence of GFI1. We identify a systematic downregulation of hair cell differentiation genes, concomitant with robust upregulation of neuronal genes in the GFI1-deficient hair cells. This includes increased expression of neuronal-associated transcription factors (e.g. Pou4f1) as well as transcription factors that serve dual roles in hair cell and neuronal development (e.g. Neurod1, Atoh1 and Insm1). We further show that the upregulated genes are consistent with the NEUROD1 regulon and are normally expressed in hair cells prior to GFI1 onset. Additionally, minimal overlap of differentially expressed genes in auditory and vestibular hair cells suggests that GFI1 serves different roles in these systems. From these data, we propose a dual mechanism for GFI1 in promoting hair cell development, consisting of repression of neuronal-associated genes as well as activation of hair cell-specific genes required for normal functional maturation.


2005 ◽  
Vol 93 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Timo P. Hirvonen ◽  
Lloyd B. Minor ◽  
Timothy E. Hullar ◽  
John P. Carey

Gentamicin is toxic to vestibular hair cells, but its effects on vestibular afferents have not been defined. We treated anesthetized chinchillas with one injection of gentamicin (26.7 mg/ml) into the middle ear and made extracellular recordings from afferents after 5–25 (early) or 90–115 days (late). The relative proportions of regular, intermediate, and irregular afferents did not change after treatment. The spontaneous firing rate of regular afferents was lower ( P < 0.001) on the treated side (early: 44.3 ± 16.3; late: 33.9 ± 13.2 spikes·s−1) than on the untreated side (54.9 ± 16.8 spikes·s−1). Spontaneous rates of irregular and intermediate afferents did not change. The majority of treated afferents did not measurably respond to tilt or rotation (82% in the early group, 76% in the late group). Those that did respond had abnormally low sensitivities ( P < 0.001). Treated canal units that responded to rotation had mean sensitivities only 5–7% of the values for untreated canal afferents. Treated otolith afferents had mean sensitivities 23–28% of the values for untreated otolith units. Sensitivity to externally applied galvanic currents was unaffected for all afferents. Intratympanic gentamicin treatment reduced the histological density of all hair cells by 57% ( P = 0.04). The density of hair cells with calyx endings was reduced by 99% ( P = 0.03), although some remaining hair cells had other features suggestive of type I morphology. Type II hair cell density was not significantly reduced. These findings suggest that a single intratympanic gentamicin injection causes partial damage and loss of vestibular hair cells, particularly type I hair cells or their calyceal afferent endings, does not damage the afferent spike initiation zones, and preserves enough hair cell synaptic activity to drive the spontaneous activity of vestibular afferents.


Sign in / Sign up

Export Citation Format

Share Document