Differential expression of the closely linked KISS1, REN, and FLJ10761 genes in transgenic mice

2004 ◽  
Vol 17 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Ravi Nistala ◽  
Xiaoji Zhang ◽  
Curt D. Sigmund

We previously reported the development and characterization of transgenic mice containing a large 160-kb P1 artificial chromosome (PAC) encompassing the renin (REN) locus from human chromosome 1. Here we demonstrate that PAC160 not only encodes REN, but also complete copies of the next upstream (KISS1) and downstream ( FLJ10761 ) gene along human chromosome 1. Incomplete copies of the second upstream (PEPP3) and downstream (SOX13) genes are also present. The gene order PEPP3-KISS1-REN-FLJ10761-SOX13 is conserved in mice containing either one or two copies of the REN locus. Despite the close localization of KISS1, REN, and FLJ10761 , they each exhibit distinct, yet overlapping tissue-specific expression profiles in humans. The tissue-specific expression patterns of REN and FLJ10761 were retained in transgenic mice containing PAC160. Expression of REN and FLJ10761 were also proportional to copy number. Expression of KISS1 in PAC160 mice showed both similarities and differences to humans. These data suggest that expression of gene blocks encoded on large genomic clones are retained when the clones are used to generate transgenic mice. Genomic elements which act to insulate genes from their neighbors are also apparently retained.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tongyu Feng ◽  
Xuelian He ◽  
Renying Zhuo ◽  
Guirong Qiao ◽  
Xiaojiao Han ◽  
...  

AbstractCd is one of the potential toxic elements (PTEs) exerting great threats on the environment and living organisms and arising extensive attentions worldwide. Sedum alfredii Hance, a Cd hyperaccumulator, is of great importance in studying the mechanisms of Cd hyperaccumulation and has potentials for phytoremediation. ATP-binding cassette sub-family C (ABCC) belongs to the ABC transporter family, which is deemed to closely associate with multiple physiological processes including cellular homeostasis, metal detoxification, and transport of metabolites. In the present work, ten ABCC proteins were identified in S. alfredii Hance, exhibiting uniform domain structure and divergently clustering with those from Arabidopsis. Tissue-specific expression analysis indicated that some SaABCC genes had significantly higher expression in roots (Sa23221 and Sa88F144), stems (Sa13F200 and Sa14F98) and leaves (Sa13F200). Co-expression network analysis using these five SaABCC genes as hub genes produced two clades harboring different edge genes. Transcriptional expression profiles responsive to Cd illustrated a dramatic elevation of Sa14F190 and Sa18F186 genes. Heterologous expression in a Cd-sensitive yeast cell line, we confirmed the functions of Sa14F190 gene encoding ABCC in Cd accumulation. Our study performed a comprehensive analysis of ABCCs in S. alfredii Hance, firstly mapped their tissue-specific expression patterns responsive to Cd stress, and characterized the roles of Sa14F190 genes in Cd accumulation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexandra B. Bentz ◽  
Gregg W. C. Thomas ◽  
Douglas B. Rusch ◽  
Kimberly A. Rosvall

Abstract Tree swallows (Tachycineta bicolor) are one of the most commonly studied wild birds in North America. They have advanced numerous research areas, including life history, physiology, and organismal responses to global change; however, transcriptomic resources are scarce. To further advance the utility of this system for biologists across disciplines, we generated a transcriptome for the tree swallow using six tissues (brain, blood, ovary, spleen, liver, and muscle) collected from breeding females. We de novo assembled 207,739 transcripts, which we aligned to 14,717 high confidence protein-coding genes. We then characterized each tissue with regard to its unique genes and processes and applied this transcriptome to two fundamental questions in evolutionary biology and endocrinology. First, we analyzed 3,015 single-copy orthologs and identified 46 genes under positive selection in the tree swallow lineage, including those with putative links to adaptations in this species. Second, we analyzed tissue-specific expression patterns of genes involved in sex steroidogenesis and processing. Enzymes capable of synthesizing these behaviorally relevant hormones were largely limited to the ovary, whereas steroid binding genes were found in nearly all other tissues, highlighting the potential for local regulation of sex steroid-mediated traits. These analyses provide new insights into potential sources of phenotypic variation in a free-living female bird and advance our understanding of fundamental questions in evolutionary and organismal biology.


2007 ◽  
Vol 18 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Luzhou Xing ◽  
Martha Salas ◽  
Chyuan-Sheng Lin ◽  
Warren Zigman ◽  
Wayne Silverman ◽  
...  

2013 ◽  
Author(s):  
AL Bookout ◽  
Y Jeong ◽  
M Downes ◽  
RT Yu ◽  
RM Evans ◽  
...  

1992 ◽  
Vol 20 (9) ◽  
pp. 2249-2255 ◽  
Author(s):  
Thomas R. Mikkelsen ◽  
Jakob Brandt ◽  
H.Jakob Larsen ◽  
Birte B. Larsen ◽  
Knud Poulsen ◽  
...  

Cell ◽  
1984 ◽  
Vol 38 (3) ◽  
pp. 639-646 ◽  
Author(s):  
Galvin H. Swift ◽  
Robert E. Hammer ◽  
Raymond J. MacDonald ◽  
Ralph L. Brinster

2021 ◽  
Vol 11 ◽  
Author(s):  
Voddu Suresh ◽  
Deepti Parida ◽  
Aliva P. Minz ◽  
Manisha Sethi ◽  
Bhabani S. Sahoo ◽  
...  

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models’ optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn’t show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study’s findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.


1995 ◽  
Vol 4 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Martin Hergersberg ◽  
Koichi Matsuo ◽  
Max Gassmann ◽  
Walter Schaffner ◽  
Bernhard Lüscher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document