scholarly journals Free Vibration Characteristics of Cylindrical Shells Using a Wave Propagation Method

2001 ◽  
Vol 8 (2) ◽  
pp. 71-84 ◽  
Author(s):  
A. Ghoshal ◽  
S. Parthan ◽  
D. Hughes ◽  
M.J. Schulz

In the present paper, concept of a periodic structure is used to study the characteristics of the natural frequencies of a complete unstiffened cylindrical shell. A segment of the shell between two consecutive nodal points is chosen to be a periodic structural element. The present effort is to modify Mead and Bardell's approach to study the free vibration characteristics of unstiffened cylindrical shell. The Love-Timoshenko formulation for the strain energy is used in conjunction with Hamilton's principle to compute the natural propagation constants for two shell geometries and different circumferential nodal patterns employing Floquet's principle. The natural frequencies were obtained using Sengupta's method and were compared with those obtained from classical Arnold-Warburton's method. The results from the wave propagation method were found to compare identically with the classical methods, since both the methods lead to the exact solution of the same problem. Thus consideration of the shell segment between two consecutive nodal points as a periodic structure is validated. The variations of the phase constants at the lower bounding frequency for the first propagation band for different nodal patterns have been computed. The method is highly computationally efficient.

2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


2013 ◽  
Vol 390 ◽  
pp. 207-214 ◽  
Author(s):  
Mahdi Yusefzad ◽  
Firouz Bakhtiari Nejad

The free vibration characteristics of the prestressed joined spherical–cylindrical shell with free-free boundary conditions are investigated. The Flügge shell theory and Rayleigh-Ritz energy method are applied in order to analyze the free vibration characteristics of the joined shell. In the modal test, the LMS software is used to calculate mode shapes and natural frequencies of the joined shell structure. The natural frequencies and mode shapes are calculated numerically and they are compared with those of the FEM and modal test to confirm the reliability of the analytical solution. The effects of the shallowness and length of the cylindrical shell to the free vibrational behavior of joined shell structure and the effect of internal pressure on the modal charactristics are investigated.


1981 ◽  
Vol 48 (1) ◽  
pp. 169-173 ◽  
Author(s):  
S. Narayanan ◽  
J. P. Verma ◽  
A. K. Mallik

Free-vibration characteristics of a thin-walled, open cross-section beam, with unconstrained damping layers at the flanges, are investigated. Both uncoupled transverse vibration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are considered. Numerical results are presented for natural frequencies and modal loss factors of simply supported and clamped-clamped beams.


2001 ◽  
Vol 01 (01) ◽  
pp. 125-144 ◽  
Author(s):  
HUAN ZENG ◽  
CHARLES W. BERT

Stiffened skew plates find application in various engineering fields. The free vibration characteristics of such plates have been studied by various methods. An orthogonally stiffened skew plate is a skew plate with stiffeners running orthogonal to two opposite edges. To the best knowledge of the present investigators, no previous work has been done for free vibration characteristics of skew plates of such stiffening geometry. The present work studies the free vibration of such plates. The pb-2 Rayleigh–Ritz method was employed due to its accuracy and computational efficiency. The conventional finite element method was also used as a comparative check. A convergence study was first performed for various boundary conditions. Then the vibration of orthogonally stiffened skew plates with different boundary conditions was studied. Close agreement was found between these two methods. The variations of natural frequencies with different parameters, including skew angle ϕ, edge ratio b/a, and height-thickness ratio f/h, were investigated for three types of boundary conditions.


Author(s):  
Xiaocong He ◽  
Ian Pearson ◽  
Ken Young

Self-piercing riveting (SPR) has drawn more attention in recent years because it can join some advanced materials that are hard to weld, such as aluminum alloy sheets. In this paper, the free torsional vibration characteristics of single lap-jointed encastre SPR beam are investigated in detail. The focus of the analysis is to reveal the influence on the torsional natural frequencies and mode shapes of the single lap-jointed encastre SPR beam of different characteristics of sheets to be jointed. Numerical examples show that the torsional natural frequencies increase significantly as the Young’s modulus of the sheets increase, but almost no change corresponding to the change in Poisson’s ratio of the sheets to be joint. The mode shapes show that there are different deformations in the jointed section of SPR beam compared with the reference encastre beam without joint. These different deformations may cause different natural frequency values and different stress distributions.


Author(s):  
A Hasani Baferani ◽  
A R Saidi ◽  
E Jomehzadeh

The aim of this article is to find an exact analytical solution for free vibration characteristics of thin functionally graded rectangular plates with different boundary conditions. The governing equations of motion are obtained based on the classical plate theory. Using an analytical method, three partial differential equations of motion are reformulated into two new decoupled equations. Based on the Navier solution, a closed-form solution is presented for natural frequencies of functionally graded simply supported rectangular plates. Then, considering Levy-type solution, natural frequencies of functionally graded plates are presented for various boundary conditions. Three mode shapes of a functionally graded rectangular plate are also presented for different boundary conditions. In addition, the effects of aspect ratio, thickness—length ratio, power law index, and boundary conditions on the vibration characteristics of functionally graded rectangular plates are discussed in details. Finally, it has been shown that the effects of in-plane displacements on natural frequencies of functionally graded plates under different boundary conditions have been studied.


2018 ◽  
Vol 1 (2) ◽  
pp. 35-39
Author(s):  
Kenji Hosokawa

Since composite materials such as laminated composite plates have high specific strength and high structural efficiency, they have been usedin many structural applications. It is therefore very important to make clear the vibration characteristics of the laminated plates for the designand the structural analysis. Especially, the vibration characteristics of the laminated plates with attached mass are essential. However, wecannot find the theoretical or experimental approaches for the free vibration of laminated plates with attached mass. In the present study, theexperimental and numerical approaches are applied to the free vibration of cantilevered symmetrically laminated plates with attached mass.First, by applying the experimental modal analysis technique to the cantilevered symmetrically laminated plates with attached mass, thenatural frequencies and mode shapes of the plates are obtained. Next, the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates with attached mass are calculated by Finite Element Method (FEM). Finally, from the experimental andnumerical results, the effect of the moment of inertia of the attached mass to the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates are clarified.


2012 ◽  
Vol 189 ◽  
pp. 438-442 ◽  
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper presents a FEA method for vibration characteristics analysis of aero-engine compressor disc. An actual modal analysis of a certain aero-engine compressor disc is made based on this method. The first ten natural frequencies and modes of this compressor disc in fully constrained boundary condition and in free vibration condition are obtained respectively. And also, the vibration characteristics of each natural mode and its effect on compressor disc and other accessories are analyzed in depth. The analysis process and results presented in this paper can be references for further study on optimal design and vibration safety verification for this aero-engine compressor disc.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xue-Qin Li ◽  
Wei Zhang ◽  
Xiao-Dong Yang ◽  
Lu-Kai Song

A unified approach of free vibration analysis for stiffened cylindrical shell with general boundary conditions is presented in this paper. The vibration of stiffened cylindrical shell is modeled mathematically involving the first-order shear deformation shell theory. The improved Fourier series is selected as the admissible displacement function while the arbitrary boundary conditions are simulated by adjusting the equivalent spring stiffness. The natural frequencies and modal shapes of the stiffened shell are obtained by solving the dynamic model with the Rayleigh-Ritz procedure. Various numerical results of free vibration analysis for stiffened cylindrical shell are obtained, including natural frequencies and modes under simply supported, free, and clamped boundary conditions. Moreover, the effects of stiffener on natural frequencies are discussed. Compared with several state-of-the-art methods, the feasibility and validity of the proposed method are verified.


Sign in / Sign up

Export Citation Format

Share Document