scholarly journals Vibrational Energy Flow Analysis of Corrected Flexural Waves in Timoshenko Beam – Part II: Application to Coupled Timoshenko Beams

2006 ◽  
Vol 13 (3) ◽  
pp. 167-196 ◽  
Author(s):  
Young-Ho Park ◽  
Suk-Yoon Hong

This paper presents the methodology for the energy flow analysis of coupled Timoshenko beam structures and various numerical applications to verify the developed methodology. To extend the application of the energy flow model for corrected flexural waves in the Timoshenko beam, which is developed in the other companion paper, to coupled structures, the wave transmission analyses of general coupled Timoshenko beam systems are performed. First, power transmission and reflection coefficients for all kinds of propagating waves in the general, coupled Timoshenko beam structures are derived by the wave transmission approach. In numerical applications, the energy flow solutions using the derived coefficients agree well with the classical solutions for various exciting frequencies, damping loss factors, and coupled Timoshenko beam structures. Additionally, the numerical results for the Timoshenko beam are compared with those for the Euler-Bernoulli beam.

2011 ◽  
Vol 18 (1-2) ◽  
pp. 269-280 ◽  
Author(s):  
Jin You ◽  
Hong-Guang Li ◽  
Guang Meng

The validity of the application of energy flow analysis for beam structures under random excitations is investigated in this paper. The approximate solutions of energy density and intensity in a beam subject to random loadings are obtained by solving the governing equation of random energy flow analysis using Fourier transform technique. The formulations of the exact energy density distribution and intensity in the beam are derived using the classical modal analysis method. For a simply supported beam subject to distributed or concentrated random excitations, the validity of random energy flow analysis is investigated through comparisons between solutions obtained from the approximate and exact methods for energy response as well as intensity. The results indicate that, the mode count of the analysis frequency band, which means the number of modes involved in the band, is the key factor affecting the prediction accuracy of random energy flow analysis, and that if the mode count of the band is sufficiently large, random energy flow analysis can provide rather accurate estimates for both energy density and intensity in a wide frequency range.


2006 ◽  
Vol 13 (3) ◽  
pp. 137-165 ◽  
Author(s):  
Young-Ho Park ◽  
Suk-Yoon Hong

In this paper, an energy flow model is developed to analyze transverse vibration including the effects of rotatory inertia as well as shear distortion, which are very important in the Timoshenko beam transversely vibrating in the medium-to-high frequency ranges. The energy governing equations for this energy flow model are newly derived by using classical displacement solutions of the flexural motion for the Timoshenko beam, in detail. The derived energy governing equations are in the general form incorporating not only the Euler-Bernoulli beam theory used for the conventional energy flow model but also the Rayleigh, shear, and Timoshenko beam theories. Finally, to verify the validity and accuracy of the derived model, numerical analyses for simple finite Timoshenko beams were performed. The results obtained by the derived energy flow model for simple finite Timoshenko beams are compared with those of the classical solutions for the Timoshenko beam, the energy flow solution, and the classical solution for the Euler-Bernoulli beam with various excitation frequencies and damping loss factors of the beam. In addition, the vibrational energy flow analyses of coupled Timoshenko beams are described in the other companion paper.


2007 ◽  
Vol 14 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Jee-Hun Song ◽  
Suk-Yoon Hong

Our work aims to find a general solution for the vibrational energy flow through a plane network of beams on the basis of an energy flow analysis. A joint between two semi-infinite beams are modeled by three sets of springs and dashpots. Thus, the results can incorporate the case of complaint and non-conservative in all the three degrees of freedom. In the cases of finite coupled structures connected at a certain angle, the derived non-conservative joints and developed wave energy equation were applied. The joint properties, the frequency, the coupling angle, and the internal loss factor were changed to evaluate the proposed methods for predicting medium-to-high frequency vibrational energy and intensity distributions.


2013 ◽  
Vol 20 (10) ◽  
pp. 1388-1393
Author(s):  
Bi JIANG ◽  
Fa-Qi WU ◽  
Xi-Hui WU ◽  
Ming LI ◽  
Xiao-Gang TONG

2017 ◽  
Vol 167 ◽  
pp. 1148-1154 ◽  
Author(s):  
Hendrik Lambrecht ◽  
Heidi Hottenroth ◽  
Tobias Schröer ◽  
Frank Schulenburg

Sign in / Sign up

Export Citation Format

Share Document