scholarly journals Using Artificial Neural Networks to Predict Direct Solar Irradiation

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
James Mubiru

This paper explores the possibility of developing a prediction model using artificial neural networks (ANNs), which could be used to estimate monthly average daily direct solar radiation for locations in Uganda. Direct solar radiation is a component of the global solar radiation and is quite significant in the performance assessment of various solar energy applications. Results from the paper have shown good agreement between the estimated and measured values of direct solar irradiation. A correlation coefficient of 0.998 was obtained with mean bias error of 0.005 MJ/m2 and root mean square error of 0.197 MJ/m2. The comparison between the ANN and empirical model emphasized the superiority of the proposed ANN prediction model. The application of the proposed ANN model can be extended to other locations with similar climate and terrain.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Tamer Khatib ◽  
Azah Mohamed ◽  
K. Sopian ◽  
M. Mahmoud

This paper presents an assessment for the artificial neural network (ANN) based approach for hourly solar radiation prediction. The Four ANNs topologies were used including a generalized (GRNN), a feed-forward backpropagation (FFNN), a cascade-forward backpropagation (CFNN), and an Elman backpropagation (ELMNN). The three statistical values used to evaluate the efficacy of the neural networks were mean absolute percentage error (MAPE), mean bias error (MBE) and root mean square error (RMSE). Prediction results show that the GRNN exceeds the other proposed methods. The average values of the MAPE, MBE and RMSE using GRNN were 4.9%, 0.29% and 5.75%, respectively. FFNN and CFNN efficacies were acceptable in general, but their predictive value was degraded in poor solar radiation conditions. The average values of the MAPE, MBE and RMSE using the FFNN were 23%, −.09% and 21.9%, respectively, while the average values of the MAPE, MBE and RMSE using CFNN were 22.5%, −19.15% and 21.9%, respectively. ELMNN fared the worst among the proposed methods in predicting hourly solar radiation with average MABE, MBE and RMSE values of 34.5%, −11.1% and 34.35%. The use of the GRNN to predict solar radiation in all climate conditions yielded results that were highly accurate and efficient.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Tamer Khatib ◽  
Azah Mohamed ◽  
K. Sopian ◽  
M. Mahmoud

This paper presents a solar energy prediction method using artificial neural networks (ANNs). An ANN predicts a clearness index that is used to calculate global and diffuse solar irradiations. The ANN model is based on the feed forward multilayer perception model with four inputs and one output. The inputs are latitude, longitude, day number, and sunshine ratio; the output is the clearness index. Data from 28 weather stations were used in this research, and 23 stations were used to train the network, while 5 stations were used to test the network. In addition, the measured solar irradiations from the sites were used to derive an equation to calculate the diffused solar irradiation, a function of the global solar irradiation and the clearness index. The proposed equation has reduced the mean absolute percentage error (MAPE) in estimating the diffused solar irradiation compared with the conventional equation. Based on the results, the average MAPE, mean bias error and root mean square error for the predicted global solar irradiation are 5.92%, 1.46%, and 7.96%. The MAPE in estimating the diffused solar irradiation is 9.8%. A comparison with previous work was done, and the proposed approach was found to be more efficient and accurate than previous methods.


2015 ◽  
Vol 781 ◽  
pp. 628-631 ◽  
Author(s):  
Rati Wongsathan ◽  
Issaravuth Seedadan ◽  
Metawat Kavilkrue

A mathematical prediction model has been developed in order to detect particles with a diameter of 10 micrometers or less (PM-10) that are responsible for adverse health effects because of their ability to cause serious respiratory conditions in areas of high pollution such as Chiang Mai City moat area. The prediction model is based on 3 types of Artificial Neural Networks (ANNs), including Multi-layer perceptron (MLP-NN), Radial basis function (RBF-NN), and hybrid of RBF and Genetic algorithm (RBF-NN-GA). The model uses 8 input variables to predict PM-10, consisting of 4 air pollution substances ( CO, O3, NO2 and SO2) and 4 meteorological variables related PM-10 (wind speed, temperature, atmospheric pressure and relative humidity). These 3 types of ANN have proved efficient instrument in predicting the PM-10. However, the performance of RBF-NN was superior in comparison with MLP-NN and RBF-NN-GA respectively.


2017 ◽  
Vol 72 ◽  
pp. 434-438 ◽  
Author(s):  
Mohammed Bou-Rabee ◽  
Shaharin A. Sulaiman ◽  
Magdy Saad Saleh ◽  
Suhaila Marafi

2021 ◽  
Author(s):  
Lathesparan Ramachandran ◽  
Rm Kapila Tharanga Rathnayaka ◽  
Wiraj Udara Wickramaarachchi

Sign in / Sign up

Export Citation Format

Share Document