scholarly journals A Comparative Study of Dispersion Techniques for Nanocomposite Made with Nanoclays and an Unsaturated Polyester Resin

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Farida Bensadoun ◽  
Nadir Kchit ◽  
Catherine Billotte ◽  
François Trochu ◽  
Edu Ruiz

Over the last few years, polymer/clay nanocomposites have been an area of intensive research due to their capacity to improve the properties of the polymer resin. These nanocharged polymers exhibit a complex rheological behavior due to their dispersed structure in the matrix. Thus, to gain fundamental understanding of nanocomposite dispersion, characterization of their internal structure and their rheological behavior is crucial. Such understanding is also key to determine the manufacturing conditions to produce these nanomaterials by liquid composite molding (LCM) process. This paper investigates the mix of nanoclays particles in an unsaturated polyester resin using three different dispersion techniques: manual mixing, sonication, and high shear mixing (HSM). This paper shows that the mixing method has a significant effect on the sample morphology. Rheology, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) characterization techniques were used to analyze the blends morphology and evaluate the nanoclays stacks/polymer matrix interaction. Several phenomena, such as shear thinning and premature polymer gelification, were notably observed.

2019 ◽  
Vol 25 ◽  
pp. 22-31 ◽  
Author(s):  
Farhana Islam ◽  
M. Naimul Islam ◽  
Shahirin Shahida ◽  
Harun Ar Rashid ◽  
Nanda Karmaker ◽  
...  

Jute fabrics reinforced Unsaturated Polyester Resin (UPR)-based composites were prepared by conventional hand lay-up technique. Different proportions (5 to 50% by weight) of fibre content was used in preparation of the composite. Tensile Strength (TS), Tensile Modulus (TM), Bending Modulus (BM), Bending Strength (BS), Impact Strength (IS) of the fabricated composites were studied. Upon each addition of fiber content in the matrix, mechanical properties of the composites were increased. The Tensile Strength (TS) of the 5% and 50% fiber reinforced composites was 18 MPa and 42 MPa respectively. Scanning Electron Microscopy (SEM) showed interfacial properties of the composites and it was revealed that the bond between fiber and matrix was excellent.


2020 ◽  
Vol 57 (3) ◽  
pp. 52-60
Author(s):  
Mohamed Farsane ◽  
Abdellah Anouar ◽  
Souad Chah ◽  
Miloud Bouzziri

In this study, the composites of ceramic waste filler polyester were produced with ceramic waste as the filler and unsaturated polyester resin as the matrix. Various weight of filler loads (particle size [180 �m) were used; 0, 28.5, 41 and 50 wt% in view to better understand the effect of filler content on the mechanical, thermal properties and water absorption of the composites. Additionally, Fourier transform infrared spectroscopy was used to characterize the samples, from the findings, it is noticed an increase in the level of porcelain powder decreased the flexural strength and Hardness and increased the density. The results of water absorption have shown the composites absorbs fewer water. Thermal degradation indicates that the composite is more resistant to temperature than unsaturated polyester matrix due to the effect of porcelain powder incorporated. Moreover, the results reveal an opportunity for using the ceramic waste as filler in unsaturated polyester resin formulation.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
M O Munyati ◽  
P A Lovell

AbstractThe preparation of polyester resin blends consisting of an unsaturated polyester resin matrix and rubbery particles comprising three radially-alternating glassy and rubbery layers is described. The morphology of the resin blends was examined by transmission electron microscopy (TEM) while thermal properties were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The results show that the particles were prepared with good control of particle size and morphology. DMTA results showed no reduction in the Tg of the matrix whilst the shear modulus of modified materials was found to be lower than that of the matrix material.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Farida Bensadoun ◽  
Nadir Kchit ◽  
Catherine Billotte ◽  
Simon Bickerton ◽  
François Trochu ◽  
...  

Liquid composite molding (LCM) processes are widely used to manufacture composite parts for the automotive industry. An appropriate selection of the materials and proper optimization of the manufacturing parameters are keys to produce parts with improved mechanical properties. This paper reports on a study of biobased composites reinforced with nanoclay particles. A soy-based unsaturated polyester resin was used as synthetic matrix, and glass and flax fiber fabrics were used as reinforcement. This paper aims to improve mechanical and flammability properties of reinforced composites by introducing nanoclay particles in the unsaturated polyester resin. Four different mixing techniques were investigated to improve the dispersion of nanoclay particles in the bioresin in order to obtain intercalated or exfoliated structures. An experimental study was carried out to define the adequate parameter combinations between vacuum pressure, filling time, and resin viscosity. Two manufacturing methods were investigated and compared: RTM and SCRIMP. Mechanical properties, such as flexural modulus and ultimate strength, were evaluated and compared for conventional glass fiber composites (GFC) and flax fiber biocomposites (GFBiores-C). Finally, smoke density analysis was performed to demonstrate the effects and advantages of using an environment-friendly resin combined with nanoclay particles.


Sign in / Sign up

Export Citation Format

Share Document