scholarly journals Inapproximability and Polynomial-Time Approximation Algorithm for UET Tasks on Structured Processor Networks

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
M. Bouznif ◽  
R. Giroudeau

We investigate complexity and approximation results on a processor networks where the communication delay depends on the distance between the processors performing tasks. We then prove that there is no heuristic with a performance guarantee smaller than 4/3 for makespan minimization for precedence graph on a large class of processor networks like hypercube, grid, torus, and so forth, with a fixed diameter . We extend complexity results when the precedence graph is a bipartite graph. We also design an efficient polynomial-time -approximation algorithm for the makespan minimization on processor networks with diameter .

2002 ◽  
Vol 13 (04) ◽  
pp. 613-627 ◽  
Author(s):  
RENAUD LEPÈRE ◽  
DENIS TRYSTRAM ◽  
GERHARD J. WOEGINGER

This work presents approximation algorithms for scheduling the tasks of a parallel application that are subject to precedence constraints. The considered tasks are malleable which means that they may be executed on a varying number of processors in parallel. The considered objective criterion is the makespan, i.e., the largest task completion time. We demonstrate a close relationship between this scheduling problem and one of its subproblems, the allotment problem. By exploiting this relationship, we design a polynomial time approximation algorithm with performance guarantee arbitrarily close to [Formula: see text] for the special case of series parallel precedence constraints and for the special case of precedence constraints of bounded width. These special cases cover the important situation of tree structured precedence constraints. For arbitrary precedence constraints, we give a polynomial time approximation algorithm with performance guarantee [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document