scholarly journals Delay-Dependent Robust Stabilization for Nonlinear Large Systems via Decentralized Fuzzy Control

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chun-xia Dou ◽  
Zhi-sheng Duan ◽  
Xing-bei Jia ◽  
Xiao-gang Li ◽  
Jin-zhao Yang ◽  
...  

A delay-dependent robust fuzzy control approach is developed for a class of nonlinear uncertain interconnected time delay large systems in this paper. First, an equivalent T–S fuzzy model is extended in order to accurately represent nonlinear dynamics of the large system. Then, a decentralized state feedback robust controller is proposed to guarantee system stabilization with a prescribedH∞disturbance attenuation level. Furthermore, taking into account the time delays in large system, based on a less conservative delay-dependent Lyapunov function approach combining with linear matrix inequalities (LMI) technique, some sufficient conditions for the existence ofH∞robust controller are presented in terms of LMI dependent on the upper bound of time delays. The upper bound of time-delay and minimizedH∞performance index can be obtained by using convex optimization such that the system can be stabilized and for all time delays whose sizes are not larger than the bound. Finally, the effectiveness of the proposed controller is demonstrated through simulation example.

2011 ◽  
Vol 20 (08) ◽  
pp. 1571-1589 ◽  
Author(s):  
K. H. TSENG ◽  
J. S. H. TSAI ◽  
C. Y. LU

This paper deals with the problem of globally delay-dependent robust stabilization for Takagi–Sugeno (T–S) fuzzy neural network with time delays and uncertain parameters. The time delays comprise discrete and distributed interval time-varying delays and the uncertain parameters are norm-bounded. Based on Lyapunov–Krasovskii functional approach and linear matrix inequality technique, delay-dependent sufficient conditions are derived for ensuring the exponential stability for the closed-loop fuzzy control system. An important feature of the result is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using the proposed techniques for achieving delay dependence. Another feature of the results lies in that involves fewer matrix variables. Two illustrative examples are exploited in order to illustrate the effectiveness of the proposed design methods.


2017 ◽  
Vol 24 (20) ◽  
pp. 4921-4930 ◽  
Author(s):  
Nasrollah Azam Baleghi ◽  
Mohammad Hossein Shafiei

This paper studies the delay-dependent stability conditions for time-delay discrete-time switched systems. In the considered switched system, there are uncertain terms in each subsystem due to affine parametric uncertainties. Additionally, each subsystem has a time-varying state delay which adds more complexity to the stability analysis. Based on the Lyapunov functional approach, the sufficient conditions are extracted to determine the admissible upper bound of the time-varying delay for guaranteed stability. Furthermore, a class of switching signals is identified to guarantee the exponential stability of the uncertain time-delay switched system. The main advantage of the suggested switching signals is its independency to the uncertainties. Furthermore, these signals are only constrained by a determined average dwell time (may be chosen arbitrarily). Finally, a numerical example is provided to demonstrate the efficiency of the proposed method and also the reduction of conservatism in finding the admissible upper bound of time-delay in comparison with other stability analysis approaches.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng Gong ◽  
Yi Zeng

This paper investigates theH∞filtering problem of discrete singular Markov jump systems (SMJSs) with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition onH∞-disturbance attenuation is presented, in which both stability and prescribedH∞performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependentH∞filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI). Finally, an example is given to illustrate the effectiveness of the result.


2003 ◽  
Vol 2003 (4) ◽  
pp. 137-152 ◽  
Author(s):  
D. Mehdi ◽  
E. K. Boukas

This paper deals with the class of uncertain systems with multiple time delays. The stability and stabilizability of this class of systems are considered. Their robustness are also studied when the norm-bounded uncertainties are considered. Linear matrix inequality (LMIs) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established to check if a system of this class is stable and/or is stabilizable. Some numerical examples are provided to show the usefulness of the proposed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Dan Ye ◽  
Quan-Yong Fan ◽  
Xin-Gang Zhao ◽  
Guang-Hong Yang

This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs) with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.


2014 ◽  
Vol 852 ◽  
pp. 675-680
Author(s):  
Gulizhati Hailati ◽  
Jie Wang ◽  
Ting Yin

The stability of generator excitations and SVCs in power system with wide-area time-delay coordinating Control is investigated in this paper. A nonlinear time-delay Hamiltonian model of power system with SVCs is constructed and the Hamiltonian functional method is used to derive a delay-dependent steady stability criterion in term of matrix inequalities by constructing suitable Lyapunov-Krasovskii functional. Then the wide-area damping controller (WADC) and wide-area damping supplementary controller (WDSC) for the power system is designed based on the delay-dependent sufficient conditions. Four-generator eleven-bus power system is used to illustrate delay effect on inter-area mode damping. The performance of the proposed controller is verified by the results of simulation in time-domain, and it is proved that the method proposed in this paper is effective.


2013 ◽  
Vol 40 (2) ◽  
pp. 223-245 ◽  
Author(s):  
Sreten Stojanovic ◽  
Dragutin Debeljkovic

This paper deals with the problem of delay dependent stability for both ordinary and large-scale time-delay systems. Some necessary and sufficient conditions for delay-dependent asymptotic stability of continuous and discrete linear time-delay systems are derived. These results have been extended to the large-scale time-delay systems covering the cases of two and multiple existing subsystems. The delay-dependent criteria are derived by Lyapunov's direct method and are exclusively based on the solvents of particular matrix equation and Lyapunov equation for non-delay systems. Obtained stability conditions do not possess conservatism. Numerical examples have been worked out to show the applicability of results derived.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Fu Chen ◽  
Shugui Kang ◽  
Fangyuan Li

In this paper, we deal with the problem of stability and stabilization for linear parameter-varying (LPV) systems with time-varying time delays. The uncertain parameters are assumed to reside in a polytope with bounded variation rates. Being main difference from the existing achievements, the representation of the time derivative of the time-varying parameter is under a polytopic structure. Based on the new representation, delay-dependent sufficient conditions of stability and stabilization are, respectively, formulated in terms of linear matrix inequalities (LMI). Simulation examples are then provided to confirm the effectiveness of the given approach.


2011 ◽  
pp. 1208-1232
Author(s):  
Hamid Reza Karimi

An exponential H8 synchronization method is addressed for a class of uncertain master and slave neural networks with mixed time-delays, where the mixed delays comprise different neutral, discrete and distributed time-delays. An appropriate discretized Lyapunov-Krasovskii functional and some free weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing a delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H8 synchronization of the two coupled master and slave neural networks regardless of their initial states. Numerical simulations are provided to demonstrate the effectiveness of the established synchronization laws.


Sign in / Sign up

Export Citation Format

Share Document