scholarly journals Source Space Analysis of Event-Related Dynamic Reorganization of Brain Networks

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Andreas A. Ioannides ◽  
Stavros I. Dimitriadis ◽  
George A. Saridis ◽  
Marotesa Voultsidou ◽  
Vahe Poghosyan ◽  
...  

How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

2022 ◽  
Author(s):  
Fatemeh Tabassi Mofrad ◽  
Niels O. Schiller

The cytoarchitectonically tripartite organization of the inferior parietal cortex (IPC) into the rostral, the middle and the caudal clusters has been generally ignored when associating different functions to this part of the cortex, resulting in inconsistencies about how IPC is understood. In this study, we investigated the patterns of functional connectivity of the caudal IPC in a task requiring cognitive control of language, using multiband EPI. This part of the cortex demonstrated functional connectivity patterns dissimilar to a cognitive control area and at the same time the caudal IPC showed negative functional associations with both task-related brain areas and the precuneus cortex, which is active during resting state. We found evidence suggesting that the traditional categorization of different brain areas into either task-related or resting state-related networks cannot accommodate the functions of the caudal IPC. This underlies the hypothesis about a modulating cortical area proposing that its involvement in task performance, in a modulating manner, is marked by deactivation in the patterns of functional associations with parts of the brain that are recognized to be involved in doing a task, proportionate to task difficulty; however, their patterns of functional connectivity in some other respects do not correspond to the resting state-related parts of the cortex.


2020 ◽  
pp. 1-21
Author(s):  
Alexandra Anagnostopoulou ◽  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelia Romanopoulou ◽  
Vasiliki Zilidou ◽  
...  

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain’s intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.


2021 ◽  
Vol 5 ◽  
pp. 239821282110554
Author(s):  
Vasileia Kotoula ◽  
Toby Webster ◽  
James Stone ◽  
Mitul A Mehta

Acute ketamine administration has been widely used in neuroimaging research to mimic psychosis-like symptoms. Within the last two decades, ketamine has also emerged as a potent, fast-acting antidepressant. The delayed effects of the drug, observed 2–48 h after a single infusion, are associated with marked improvements in depressive symptoms. At the systems’ level, several studies have investigated the acute ketamine effects on brain activity and connectivity; however, several questions remain unanswered around the brain changes that accompany the drug’s antidepressant effects and how these changes relate to the brain areas that appear with altered function and connectivity in depression. This review aims to address some of these questions by focusing on resting-state brain connectivity. We summarise the studies that have examined connectivity changes in treatment-naïve, depressed individuals and those studies that have looked at the acute and delayed effects of ketamine in healthy and depressed volunteers. We conclude that brain areas that are important for emotional regulation and reward processing appear with altered connectivity in depression whereas the default mode network presents with increased connectivity in depressed individuals compared to healthy controls. This finding, however, is not as prominent as the literature often assumes. Acute ketamine administration causes an increase in brain connectivity in healthy volunteers. The delayed effects of ketamine on brain connectivity vary in direction and appear to be consistent with the drug normalising the changes observed in depression. The limited number of studies however, as well as the different approaches for resting-state connectivity analysis make it very difficult to draw firm conclusions and highlight the importance of data sharing and larger future studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Frigyes Samuel Racz ◽  
Orestis Stylianou ◽  
Peter Mukli ◽  
Andras Eke

Abstract Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well. Furthermore, we explored if local DFC showed region-specific differences in its multifractal and entropy-related features. DFC analyses were performed on 62-channel, resting-state electroencephalography recordings of twelve young, healthy subjects. Surrogate data testing verified the true multifractal nature of regional DFC that could be attributed to the presumed nonlinear nature of the underlying processes. Moreover, we found a characteristic spatial distribution of local connectivity dynamics, in that frontal and occipital regions showed stronger long-range correlation and higher degree of multifractality, whereas the highest values of entropy were found over the central and temporal regions. The revealed topology reflected well the underlying resting-state network organization of the brain. The presented results and the proposed analysis framework could improve our understanding on how resting-state brain activity is spatio-temporally organized and may provide potential biomarkers for future clinical research.


2020 ◽  
Author(s):  
Yameng Gu ◽  
Lucas E. Sainburg ◽  
Sizhe Kuang ◽  
Feng Han ◽  
Jack W. Williams ◽  
...  

AbstractThe brain exhibits highly organized patterns of spontaneous activity as measured by resting-state fMRI fluctuations that are being widely used to assess the brain’s functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, though this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


2018 ◽  
Author(s):  
Paulina Kieliba ◽  
Sasidhar Madugula ◽  
Nicola Filippini ◽  
Eugene P. Duff ◽  
Tamar R. Makin

AbstractMeasuring whole-brain functional connectivity patterns based on task-free (‘restingstate’) spontaneous fluctuations in the functional MRI (fMRI) signal is a standard approach to probing habitual brain states, independent of task-specific context. This view is supported by spatial correspondence between task- and rest-derived connectivity networks. Yet, it remains unclear whether intrinsic connectivity observed in a resting-state acquisitions is persistent during task. Here, we sought to determine how changes in ongoing brain activation, elicited by task performance, impact the integrity of whole-brain functional connectivity patterns. We employed a ‘steadystates’ paradigm, in which participants continuously executed a specific task (without baseline periods). Participants underwent separate task-based (visual, motor and visuomotor) or task-free (resting) steady-state scans, each performed over a 5-minute period. This unique design allowed us to apply a set of traditional resting-state analyses to various task-states. In addition, a classical fMRI block-design was employed to identify individualized brain activation patterns for each task, allowing to characterize how differing activation patterns across the steady-states impact whole-brain intrinsic connectivity patterns. By examining correlations across segregated brain regions (nodes) and the whole brain (using independent component analysis), we show that the whole-brain network architecture characteristic of the resting-state is robustly preserved across different steady-task states, despite striking inter-task changes in brain activation (signal amplitude). Subtler changes in functional connectivity were detected locally, within the active networks. Together, we show that intrinsic connectivity underlying the canonical resting-state networks is relatively stable even when participants are engaged in different tasks and is not limited to the resting-state.New and NoteworthyDoes intrinsic functional connectivity (FC) reflect the canonical or transient state of the brain? We tested the consistency of the intrinsic connectivity networks across different task-conditions. We show that despite local changes in connectivity, at the whole-brain level there is little modulation in FC patterns, despite profound and large-scale activation changes. We therefore conclude that intrinsic FC largely reflects the a priori habitual state of the brain, independent of the specific cognitive context.


2016 ◽  
Vol 37 (2) ◽  
pp. 471-484 ◽  
Author(s):  
Jonathan R Bumstead ◽  
Adam Q Bauer ◽  
Patrick W Wright ◽  
Joseph P Culver

Resting-state functional connectivity is a growing neuroimaging approach that analyses the spatiotemporal structure of spontaneous brain activity, often using low-frequency (<0.08 Hz) hemodynamics. In addition to these fluctuations, there are two other low-frequency hemodynamic oscillations in a nearby spectral region (0.1–0.4 Hz) that have been reported in the brain: vasomotion and Mayer waves. Despite how close in frequency these phenomena exist, there is little research on how vasomotion and Mayer waves are related to or affect resting-state functional connectivity. In this study, we analyze spontaneous hemodynamic fluctuations over the mouse cortex using optical intrinsic signal imaging. We found spontaneous occurrence of oscillatory hemodynamics ∼0.2 Hz consistent with the properties of Mayer waves reported in the literature. Across a group of mice (n = 19), there was a large variability in the magnitude of Mayer waves. However, regardless of the magnitude of Mayer waves, functional connectivity patterns could be recovered from hemodynamic signals when filtered to the lower frequency band, 0.01–0.08 Hz. Our results demonstrate that both Mayer waves and resting-state functional connectivity patterns can co-exist simultaneously, and that they can be separated by applying bandpass filters.


2020 ◽  
Author(s):  
Maxwell A. Bertolero ◽  
Azeez Adebimpe ◽  
Ankit N. Khambhati ◽  
Marcelo G. Mattar ◽  
Daniel Romer ◽  
...  

Human learning is a complex process in which future behavior is altered via the reorganization of brain activity and connectivity. It remains unknown whether activity and connectivity differentially reorganize during learning, and, if so, how that differential reorganization tracks stages of learning across distinct brain areas. Here, we address this gap in knowledge by measuring brain activity and functional connectivity in a longitudinal fMRI experiment in which healthy adult human participants learn the values of novel objects over the course of four days. An increasing similarity in activity or functional connectivity across subjects during learning reflects reorganization toward a common functional architecture. We assessed the presence of reorganization in activity and connectivity both during value learning and during the resting-state, allowing us to differentiate common elicited processes from intrinsic processes. We found a complex and dynamic reorganization of brain connectivity and activity—as a function of time, space, and performance—that occurs while subjects learn. Spatially localized brain activity reorganizes across the brain to a common functional architecture early in learning, and this reorganization tracks early learning performance. In contrast, spatially distributed connectivity reorganizes across the brain to a common functional architecture as training progresses, and this reorganization tracks later learning performance. Particularly good performance is associated with a sticky connectivity, that persists into the resting state. Broadly, our work uncovers distinct principles of reorganization in activity and connectivity at different phases of value learning, which inform the ongoing study of learning processes more generally.


2021 ◽  
Author(s):  
Yameng Gu ◽  
Lucas E Sainburg ◽  
Sizhe Kuang ◽  
Feng Han ◽  
Jack W Williams ◽  
...  

Abstract The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic resonance imaging (fMRI) fluctuations that are being widely used to assess the brain’s functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


2021 ◽  
Author(s):  
Xiaodi Zhang ◽  
Eric Maltbie ◽  
Shella Keilholz

AbstractRecent resting-state fMRI studies have shown that brain activity exhibits temporal variations in functional connectivity by using various approaches including sliding window correlation, co-activation patterns, independent component analysis, quasi-periodic patterns, and hidden Markov models. These methods often model the brain activity as a discretized hopping among several brain states that are defined by the spatial configurations of network activity. However, the discretized states are merely a simplification of what is likely to be a continuous process, where each network evolves over time following its unique path. To model these characteristic spatiotemporal trajectories, we trained a variational autoencoder using rs-fMRI data and evaluated the spatiotemporal features of the latent variables obtained from the trained networks. Our results suggest that there are a relatively small number of approximately orthogonal whole-brain spatiotemporal patterns that capture the most prominent features of rs-fMRI data, which can serve as the building blocks to construct all possible spatiotemporal dynamics in resting state fMRI. These spatiotemporal patterns provide insight into how activity flows across the brain in concordance with known network structures and functional connectivity gradients.


Sign in / Sign up

Export Citation Format

Share Document